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The ocean and the atmosphere, and hence the climate, are governed at large scale by interactions

between pressure gradient and Coriolis and buoyancy forces. This leads to a quasigeostrophic balance in

which, in a two-dimensional-like fashion, the energy injected by solar radiation, winds, or tides goes to

large scales in what is known as an inverse cascade. Yet, except for Ekman friction, energy dissipation and

turbulent mixing occur at a small scale implying the formation of such scales associated with breaking of

geostrophic dynamics through wave-eddy interactions or frontogenesis, in opposition to the inverse

cascade. Can it be both at the same time? We exemplify here this dual behavior of energy with the help of

three-dimensional direct numerical simulations of rotating stratified Boussinesq turbulence. We show that

efficient small-scale mixing and large-scale coherence develop simultaneously in such geophysical and

astrophysical flows, both with constant flux as required by theoretical arguments, thereby clearly resolving

the aforementioned contradiction.
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Geostrophic balance, in which nonlinearities are
neglected, leads to simplified quasibidimensional behavior
with energy flowing to large scales, and reduced small-
scale dissipation, contrary to observations [1–5]: vertical
mixing can decrease water density, contributing to the
(upward) closing of the ocean global circulation [1]. It is
identified with breaking of internal gravity waves [6], and
it can potentially control the amplitude of the mesoscales.

Such flows are neither 3D nor 2D, since at small scales
3D eddies may prevail. Considering the system dimension-
ality DS proved essential when examining critical phe-
nomena which simplify in higher dimensions, due to
more mode interactions as DS grows. Fluid turbulence is
vastly different in two or three dimensions, because of the
strong constraint imposed by the new 2D invariants (such as
the integrated powers of vorticity). This leads to energy
flowing towards the largest scales, ending up in a conden-
sate [7]; it can take the form of features such as jets,
observed in the atmosphere of planets, or in the oceans as
striations [8]. Thus, geophysical turbulence is anisotropic,
quasi-2D at large scale and quasi-3D at small scale [9].

However, traditional three-dimensional homogeneous iso-
tropic turbulence is known to break structures (mesoscale
eddies, clouds) into progressively smaller entities which will
be dissipated at small scale, enhancingmixing of tracers such
as pollutants [10] or biota [11].Whereas the fate of energy in
3D is modeled through an enhanced viscosity �turb > 0, the
2D evolution leading to large-scale structures can be related
to a destabilizing transport coefficient, e.g., �turb � 0. Since
the direction of the cascade is known to affect the amount of
energy available to irreversible processes of dissipation and
mixing, it is thus an essential parameter in the overall energy
budget of the atmosphere and ocean [12].

A transition from 2D to 3D in turbulence has been
investigated in various contexts. For example, is there a
critical dimension for which �turb changes sign, indicative
of a change of behavior in the overall flow dynamics?
Using two-layer quasigeostrophic models with bottom
friction, it was shown recently that when adding, in a
somewhat ad hoc fashion, a horizontal eddy-viscosity
mimicking coupling to smaller scales and thereby presum-
ably changing locally the sign of �turb, both a direct and
inverse energy cascades were obtained [13].
More formally, starting from two-point turbulence clo-

sure, space dimensionality appears through incompressi-
bility. The critical dimension that separates 2D from 3D
behavior can be computed and is found to be � 2:05 [14]
(see also [15]). A simple model which is a local version (in
modal space) of the closure equations, derived in [16],
describes the energy flux to the small scales and the large
scales by introducing an (unsigned) parameter which rep-
resents the ratio of inverse to direct flux,

R� ¼ j�I=�Dj;
it is found to be a smooth monotonic function of DS, in a
fashion similar to critical phenomena, thus providing a
path between 2D and 3D behavior. In order to model the
anisotropy of geophysical flows, one can alternatively
introduce an anisotropic scale contraction or dilation.
This allows us to break the geostrophy constraint by con-
sidering explicitly the production of horizontal vorticity by
horizontal or vertical eddies; it leads to a fractal dimension
of turbulence, close to 2.55 for stratified flows [17].
Furthermore, an inverse energy cascade can also occur

in 3D homogeneous isotropic turbulence. On the one hand,
when restricting nonlinear interactions in 3D to those
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between helical waves of the same polarization, energy is
found to flow to a large scale, with helicity (velocity-
vorticity correlations) populating the small scales [18]. In
reality, cross-polarization interactions dominate, but the
tendency for strong inverse transfer is clearly displayed
in this restricted model.

On the other hand, taking a purely 2D input of energy
and a fluid with a variable aspect ratio Ar, energy again has
an increased tendency to flow to large scales as Ar becomes
small, with a transition at Ar � 1=2 (Ar is defined as the
ratio of the vertical resolution to the forcing scale) [19]. A
clear dual energy cascade is obtained, with the ratio of
inverse to forward flux R� being a decreasing function of
Ar. Also, inverse transfer in thick layers (now with Ar �
0:78) is observed experimentally, the suppression of verti-
cal motions being attributed to interactions with vertical
shear for eddies whose time scale is larger than the char-
acteristic shear time [20].

These are idealized physical systems, modeling complex
fluids under rather restrictive conditions. However, the link
between large scales and small scales (or nonlocal interac-
tions between Fourier modes) is embodied in coherent struc-
tures such as chlorophyl filaments [21], water vapor, ozone,
temperature, or salinity tracer fronts, and in magnetohydro-
dynamics, current sheets, plasmoids, and Alfvén vortices
[22]. These structures have one dimension comparable to
the integral scale of the flow or larger and one close to the
dissipative scale. One element altering the way such struc-
tures arise and evolve is the ideal invariants, and in particular
whether or not they involve gradients. Finally, if one expects
the symmetries of the primitive equations to recover at small
scale, using a statistical argument based on the large number
of modes, this recovery may be impeded by the presence of
large-scale shear [23]. For example, direct coupling between
large scales (at which the inertiogravity waves reside) and
small scales (at which turbulence resides) was demonstrated
in [24], providing a progressive destruction of shear layers
together with propagation, over the layer depth, of efficient
mixing induced by the turbulence.

Stratified turbulence is not 2D in the traditional sense: it
has strong vertical shearing [9,25–29], allowing for the
efficient creation of small scales, as well as of large scales
in the presence of rotation [30]. What is perhaps not well
recognized is that the 3D Boussinesq equations, including
rotation and stratification as in the atmosphere and oceans,
can produce both large-scale and small-scale energy exci-
tation, both with constant flux. Numerous numerical stud-
ies suffer from a lack of resolving both the large and the
small eddies: because of the inherent cost of such compu-
tations, a divide-and-conquer approach has been success-
fully followed, analyzing either the direct or the inverse
cascade, but not convincingly both. Fluxes of energy to
large scales and to small scales become comparable for
strong rotation [31], as well as in the presence of stratifi-
cation [32]. However, in all these studies, the smallness of

the forcing wave number (� 4 or 5) does not allow for a
clear conclusion concerning the existence of the inverse
cascade itself.
Thus, we now provide numerical evidence of the simul-

taneous generation of large-scale and small-scale flows,
both with constant flux, using direct numerical simulations
(DNS) of the Boussinesq equations (see Table I).
Methods.—Oceanic turbulence is studied in the ideal-

ized context of the incompressible stably stratified rotating
Boussinesq primitive equations, with u the velocity and �
the density (or temperature) fluctuations in units of veloc-
ity. Solid-body rotation of strength �0 (with f ¼ 2�0)
is imposed in the vertical (z) direction with unit vector ẑ,
as well as antialigned gravity g; an isotropic three-
dimensional forcing function F is imposed as well:

@tu� ��uþ N�ẑþ Fþrp� fu� ẑ ¼ �u � ru;
(1)

@t�� ���� Nw ¼ �u � r�; (2)

w being the vertical velocity, p the pressure, � the viscos-
ity, and � ¼ � the thermal diffusivity. r � u ¼ 0 ensures
incompressibility. The square Brunt-Väisälä frequency is
given by N2 ¼ �ðg=�Þðd ��=dzÞ, where d ��=dz is the
imposed background stratification, assumed to be linear
and constant. In the ideal case (� ¼ 0, F ¼ 0), the total
(kinetic plus potential) energy ET ¼ 1

2 hjuj2 þ �2i ¼ EV þ
EP is conserved and the pointwise potential vorticity PV ¼
�N!z þ f@z�þ! � r� is a material invariant. No mod-
eling of small-scale dynamics is included.

TABLE I. Runs on cubic grids of n3p points, 10 and 15 repre-
senting np ¼ 1024 and 1536. All runs use a random force in the

wave number band kF 2 ½10; 11�. Re, Fr, and Ro are the
Reynolds, Froude, and Rossby numbers, with N=f ¼ Ro=Fr
and RB ¼ ReFr2 the buoyancy Reynolds number. R� ¼
�I=�D is the ratio of the inverse to the direct flux of energy in
the vicinity of kF (1< k< 9 for �I , 11< k< 20 for �D); it is
computed on spectra averaged over 10 turnover times �NL ¼
LF=U0, in the range 12< t=�NL < 22. Finally, � is the best fit
for the small-scale kinetic energy spectral index. Note the
significant decrease of � with the increasing strength of small-
scale turbulent eddies compared to the waves, as measured by
RB, a parameter related to the ratio of the forcing to the
Ozmidov and dissipative scales at fixed N=f. All large-scale
(k < kF) spectral indices are close to 5=3 (see Fig. 2).

Run Re Fr Ro N=f RB R� �

10a 5000 0.020 0.08 4 2.0 5.77 �3:99
10b 5000 0.045 0.18 4 10.1 2.70 �2:93
10c 5000 0.060 0.24 4 18.0 1.36 �2:34
10d 4000 0.040 0.08 2 6.4 9.04 �3:99
10e 5000 0.090 0.18 2 40.5 1.62 �2:12
15a 8000 0.100 0.20 2 80.0 1.08 �1:87
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The GHOST code (Geophysical High Order Suite for
Turbulence) is pseudospectral and triperiodic, with n3p
grid points; it is parallelized with a hybrid MPI/Open-MP
method and scales linearly up to 98 000 processors for a
grid of up to 61443 points [33]. Forcing is introduced in the
momentum equation as a random field centered in the wave
number band kF 2 ½10; 11�. The largest resolved scale is
adimensionalized to L0 ¼ 2�, corresponding to a mini-
mum wave number kmin ¼ 1; the smallest resolved scale
is 2�=kmax ¼ 6�=np. Initial conditions are zero for the

density fluctuations and random for the velocity.
Three dimensionless parameters characterize the flow:

the Reynolds number Re ¼ U0LF=�, the Rossby number
Ro ¼ U0=½LFf�, and the Froude number, Fr ¼ U0=½LFN�.
U0 � 1 is the rms velocity, LF ¼ 2�=kF is the forcing
scale; finally, �V � dEV=dt ¼ �hu � Fi is the kinetic
energy injection rate. Note that in order to resolve the

Ozmidov scale, ‘oz ¼ ½�V=N3�1=2, at which the eddy
turnover time and 1=N become equal and isotropization
recovers, one can show that RB � 1, where RB ¼ ReFr2

is the buoyancy Reynolds number. Runs are performed
with 2<RB � 80 (see Table I). Whether the Ozmidov
scale is properly resolved or not may well alter the effi-
ciency of mixing, and the properties of stratified turbu-
lence, as advocated in [27] and as also observed here.

The right-hand sides of Eqs. (1) and (2) are used to derive
the evolution of the total (kinetic plus potential) energy
density. Taking its Fourier transform (denoted by :̂, with ?
denoting complex conjugate) gives access to the spectral
transfer which, upon integration over the wave number,
yields the total isotropic energy flux �T ¼ �V þ�P:

�VðkÞ ¼
Z k

kmin

TVðqÞdq;

TVðqÞ ¼ �X
Cq

û?
q � ð du � ruÞq;

with Cq the shell q � jqj< qþ 1. An expression for �P

can be written in a similar fashion. Note that in these
Boussinesq runs the eventual change of sign of energy
fluxes at a ‘‘zero-crossing’’ wave number is given by kF
since the forcing is added at that scale.

Results.—Figure 1 shows full 2D cuts of vertical
velocity in the vertical and horizontal for Run 15a; the
forcing is roughly 1/10 of the box and one clearly observes
both intense small-scale features where dissipation occurs
and organized patches significantly larger than the forcing
scale, indicative of the dual flux of energy.

Results concerning scale-to-scale distribution in Fourier
space are displayed in Fig. 2 for runs with N=f ¼ 2 and 4,
with the fluxes �TðkÞ (right) being averaged for 10 turn-
over times after the peak of dissipation tp � 1:3, which

also marks the onset of the inverse cascade. All runs listed
in Table I display a clear inverse energy cascade (k < kF),

with a negative flux, and with an approximate k�5=3 scaling

[30], as expected from classical theory of 2D turbulence
[7,34]. This inverse cascade to large scales in 2D was
demonstrated using, e.g., two-point closures [35], or
more recently, high-resolution DNS [36].
These runs also have a clear direct energy cascade for

k > kF, with a constant positive flux. Spectral indices� are
defined through EVðkÞ 	 k�, where the fit is performed in
the inertial range of wave number, kF < k < kdiss with
kdiss � kmax marking the onset of the dissipation range.
These exponents (see Table I) vary between� 3:99 and�
1:87; the steeper, the lower RB, a parameter that can be
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FIG. 1. (a) Horizontal (xy) and (b) vertical (xz) two-
dimensional cuts of the vertical velocity for Run 15a at the latest
time, with RB � 80 and a small-scale spectrum slightly steeper
than a Kolmogorov law. The axes are labeled in terms of grid
spacing, and the forcing scale corresponds to roughly 145 in
these units. Observe the large-scale structures, with a size of up
to a third of the overall flow (or more in the filaments), arising
from the inverse cascade, together with superimposed intense
small scale eddies (e.g., at x � 200, y � 1100 in the top figure).
Notice also the different structures in the two cuts, indicative of
the persistent anisotropy of the flow.
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related to the ratios LF=‘oz and LF=‘diss, where ‘diss is the
dissipation wavelength. The shallower spectrum is close to
a Kolmogorov solution �Kol ¼ 5=3, expected (possibly
with small intermittency corrections) once the small scales
recover isotropy for high enough RB (see [31] for the
rotating case).

The inset in Fig. 2 gives the temporal variation of EV

(solid lines) and (scaled) dissipation DV ¼ 2�hj!j2i
(dashed lines). The steady energy increase, after an initial
transient, is typical of inverse cascades. The variation of
the ratio of inverse to direct flux with the buoyancy
Reynolds number is indicative of the increased effective-
ness of turbulence as RB grows. One can also expect this
ratio to decrease as N=f increases since no inverse cascade
occurs in the purely stratified case [30].

Such direct cascades of energy in rotating stratified
turbulence have been analyzed using theoretical closure
models of turbulence [37]. Dual cascades were also found
when examining AVISO altimeter data for the Kuroshio
current [13], with values of R� approaching those of
oceanic data for the largest imposed turbulent (horizontal)
viscosity. Whereas these authors conclude to some ambi-
guity in the interpretation of their results due to the neces-
sary filtering of the data, our DNS of the Boussinesq
equations unambiguously show that dual energy cascades
are realistic outcomes in a geophysical setting. The higher
values of R� found in our runs likely reflect the fact that
buoyancy is not dominant in our DNS, with N=f � 4.
However, we note that the abyssal southern ocean at mid
latitudes has N=f as low as 4 or 5 and shows considerable
mixing [1,38].

Conclusion and discussion.—We have shown in this
Letter that a dual (direct and inverse) constant flux

energy cascade is present in rotating stratified turbulence,
thereby resolving the paradox noted by some authors (see,
e.g., [4,13]) and thus adding credence to having both geo-
strophic balance and anomalous transport in geophysical
turbulence. The computations clearly point out the possi-
bility of the coexistence in the ocean and the atmosphere of
idealized large-scale dynamics dominated by quasigeo-
strophic motions, together with the production of small
scales, essential to transport [38].
More computations and data analysis are required to

categorize in a quantitative way the duality of the energy
cascade, as well as the mixing efficiency one can expect in
rotating stratified flows. For example, the variation of R�

with the relevant dimensionless parameters, such as Re,
N=f, and RB, as well as LF ¼ 2�=kF (when measured
relative to L0, ‘oz and ‘diss), is an open problem which will
require huge numerical as well as observational resources.
In that context, two-point closures of turbulence (see, e.g.,
[9]), so-called shell models as used in [16] but generalized
to include both rotation and stratification, as well as sub-
grid scale modeling of small-scale dynamics may be intro-
duced to study this phenomenon in a thorough parametric
fashion (see, e.g., [39] for rotating flows), varying the
forcing mechanisms as well.
However, there are some indications of a dual flux, using

quasigeostrophy [13], or in more complex settings using a
numerical oceanic model applied to the California coastal
current [40]. This somewhat paradoxical behavior of the
energy directivity can be understood if one recalls that
triadic energetic exchanges can be either positive or nega-
tive, and it is a delicate balance between the two that
determines the overall sign of the flux, as also found for
helical flows [18].

(a) (b)

FIG. 2 (color online). (a) Kinetic energy spectra for Run 10d (red line), 10e (blue line), and 15a (black line), all with N=f ¼ 2 and
increasing RB ¼ ReFr2. The straight lines with different power laws are given as indications. In the bottom inset are shown the
temporal evolution of the kinetic energy for the same runs (solid lines), together with their (scaled) dissipation (dashed lines)
5� 2�hj!j2i, with ! ¼ r� u the vorticity. The spectra, not averaged in time, are shown at t=�NL 	 22, whereas the peak of
dissipation occurs for all the runs around t=�NL 	 1:3, time after which the energy starts to grow, with �NL ¼ LF=U0 the turnover time.
(b) Total (kinetic plus potential) energy fluxes normalized by energy input �V ¼ hu � Fi for the same runs, as well as for runs 10a
(magenta dashed line), 10b (green dashed line), and 10c (cyan dashed line) for which N=f ¼ 4.
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Physical descriptions beyond the Boussinesq equations
can be used in modeling geophysical turbulence. For
example, one can consider the evaporatively driven
(as opposed to radiatively driven) configurations of strato-
cumulus clouds, in which case the buoyancy term is altered
by the existence of a threshold (in saturation mixture
fraction), leading to a nonlinear equation of state. Similar
phenomena may occur in the oceans, for which there is a
complex set of state relations between temperature, den-
sity, and salinity which may lead to distorted isopycnal
surfaces. However, using the Boussinesq framework, it is
clear that, beyond the energy cascades with small-scale or
(exclusive) large-scale constant fluxes, other—mixed—
solutions are found that can explain how the oceanic and
atmospheric systems are in quasigeostrophic balance at
large scale and yet have a sufficient production of small
scales leading to enhanced mixing.
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