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The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model

nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations

affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more

robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally

suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of

motional modes. We provide realistic experimental parameters for 171Ybþ achievable with current

technology.
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The van der Pol (vdP) oscillator was originally con-
ceived in 1920 to describe nonlinear behavior in vacuum-
tube circuits [1]. Since then, it has been the basis for
countless works, and is now a textbook model in nonlinear
dynamics [2]. As the prototypical self-sustained oscillator
that can phase-lock with an external drive or with other
oscillators [3], the vdP oscillator has been used to model
the dynamics of a variety of biological processes, such as
the heart [4], neurons [5], and circadian rhythms [6]. There
is also fundamental interest in nonequilibrium phase tran-
sitions of ensembles of oscillators [7–12].

The basic form of the vdP oscillator in the absence of a
driving force is

€xþ!2
ox� �ð1� x2Þ _x ¼ 0; (1)

where � > 0. This is a harmonic oscillator with two types
of dissipation: negative damping (� _x) and nonlinear
damping (x2 _x). The combination of the two leads to self-
sustained oscillations in steady state, known as a limit
cycle.

Equation (1) is a classical equation of motion. We are
interested in the behavior of the oscillator in the quantum
limit (near the ground state), when quantum fluctuations
play an important role. The appeal of the quantum vdP
oscillator is that due to its simple form, it can serve as a
prototypical model for studying synchronization in the
quantum limit, which has recently drawn significant
interest [13–18].

The quantum vdP oscillator is particularly relevant to
trapped-ion experiments [19–22]. As we explain below, it
can be implemented via sideband heating and cooling of an
ion. By using multiple motional modes, one can even study
collective dynamics of many oscillators. Thus, trapped ions
are an ideal platform for simulating quantum oscillator
models. This extends recent work on nonlinear dynamics
with trapped ions into the quantum regime [23–30].

In this Letter, we study the quantum behavior of vdP
oscillators under four scenarios: one oscillator with and
without an external drive, two coupled oscillators, and an

infinite number of oscillators with global coupling. In
general, we find that the classical features are retained in
the quantum limit but with significant differences. In par-
ticular, we find that phase-locking behavior can be much
stronger in the quantum model than in the equivalent
classical model. We also discuss experimental implemen-
tation with trapped ions.
Model.—When � � 1, it is convenient to write x in

terms of a complex amplitude: xðtÞ ¼ �ðtÞei!ot þ c:c:
Then Eq. (1) becomes _� ¼ ð�=2Þð1� j�j2Þ�. The follow-
ing quantum model recovers this amplitude equation in the
classical limit. It is based on a quantum harmonic oscil-
lator, whose Hilbert space is given by Fock states jni,
where n is the number of phonons. Consider the following
master equation for the density matrix �:

_� ¼ �i½H;�� þ �1ð2ay�a� aay�� �aayÞ
þ �2ð2a2�ay2 � ay2a2�� �ay2a2Þ; (2)

where @ ¼ 1. This equation may be derived from a micro-
scopic model that includes the environmental bath [31]. In
the interaction picture, H ¼ 0. There are two dissipative
processes: the oscillator gains one phonon at a time with
rate 2�1haayi, and it loses two phonons at a time with rate
2�2hay2a2i. These two processes are the quantum ana-
logues of negative damping and nonlinear damping in
Eq. (1) [33,34]. Other dissipative models were similarly
quantized in Refs. [35–38].
The classical limit is when there are many phonons:

hayai � 1. In this case, one can replace the operator a
with a complex number �, which denotes a coherent state.
To precisely show the quantum-classical correspondence,
we convert Eq. (2) into a Fokker-Planck equation for the
quantum Wigner function Wqð�;��; tÞ. The Wigner func-

tion can be thought of as a probability distribution for the
oscillator in the space of coherent states. [It is actually a
quasiprobability distribution, since it can be negative.]
Using standard techniques (see Chap. 4 of Ref. [39]), one
finds
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@tWq ¼ fð@��þ @����Þ½��1 þ 2�2ðj�j2 � 1Þ�
þ @�@�� ½�1 þ 2�2ð2j�j2 � 1Þ�
þ �2

2
ð@2�@���þ @�@

2
����ÞgWq: (3)

The diffusion (the expression after @�@��) can be negative,
and there are third-order derivatives. So Eq. (3) is actually
not of Fokker-Planck form. However, in the classical limit
(j�j2 � 1), it can be put into Fokker-Planck form via
linearization (see Chap. 5 of Ref. [39])

@tWc ¼ fð@��þ @����Þ½��1 þ 2�2ðj�j2 � 1Þ�
þ @�@�� ð3�1 þ 2�2ÞgWc: (4)

We call this the ‘‘classical model,’’ and label the Wigner
function in this classical approximation as Wc to distin-
guish it from the Wigner function Wq of the original

quantum model. We emphasize that Wc accurately
describes Eq. (2) only in the classical limit, while Wq is

always exact. The equivalent classical Langevin equation is

_� ¼ �ð�1 þ 2�2 � 2�2j�j2Þ þ �RðtÞ þ i�IðtÞ; (5)

h�RðtÞ�Rðt0Þi ¼ h�IðtÞ�Iðt0Þi ¼
�
3�1

2
þ �2

�
�ðt� t0Þ: (6)

This is the amplitude equation of the vdP oscillator but with
‘‘quantum noise’’ due to the stochastic dissipation.

Thus, when hayai � 1, the quantum oscillator is essen-
tially a classical oscillator with white noise. The properties
of such an oscillator are well understood [40]. In contrast,
we are interested in the quantum limit (hayai � 1), when
the quantum model is not equivalent to a classical noisy
oscillator. In other words, we are interested in when Eq. (3)
cannot be approximated by Eq. (4). In this regime, the
oscillator is near the ground state, and the discreteness of
the energy levels is too important to be treated simply as
noise.

In the absence of noise, the steady-state number of
phonons in Eq. (5) is j�j2 ¼ ð�1=2�2Þ þ 1. Thus, the
quantum limit corresponds to large �2, while the classical
limit corresponds to small �2. Below, we will compare Wc

and Wq. Presumably, they should agree in the classical

limit (small �2) but deviate in the quantum limit (large �2).
One vdP oscillator without a drive.—We first compare

classical and quantum results for a bare vdP oscillator.
Figures 1(a)–1(c) show that in the classical limit, the
steady-state Wigner functions, Wc and Wq, agree. The

Wigner function has a ‘‘ring’’ shape: its maximum is offset
from the origin, reflecting the fact that the complex ampli-
tude � is nonzero in steady state. The radial symmetry is
due to the fact that the phase of � is not fixed. The peak is
broadened by quantum noise [41]. Figures 1(d)–1(f) show
Wc andWq in the quantum limit. Both retain the ring shape,

but there are clear differences between them.

The steady-state Wc is easily found from Eq. (4) [40]

Wcð�;��Þ / efð2=ð3�1þ2�2ÞÞ½ð�1þ2�2Þj�j2��2j�j4�g: (7)

When �2 ! 1, this classical approximation becomes,

Wcð�;��Þ / e2j�j2�j�j4 : (8)

To find Wq, we first solve for the steady state of Eq. (2)

perturbatively in 1=�2: � ¼ 2
3 j0ih0j þ 1

3 j1ih1j þOð1=�2Þ.
In the limit �2 ! 1, the Wigner function is

Wqð�;��Þ ¼ 2

3�
ð4j�j2 þ 1Þe�2j�j2 : (9)

Interestingly, Wq retains the ring shape in the quantum

limit; i.e., it is peaked away from the origin. However,
Wc andWq have different functional forms in the quantum

limit, with maxima at j�j ¼ 1 and 1=2, respectively.
When �2 ! 1, the oscillator is confined to j0i and j1i,

since all other Fock states are immediately annihilated by
the nonlinear damping. The relative populations (2=3 in j0i
and 1=3 in j1i) are because the oscillator spends twice as
much time in j0i as in j1i, as seen in the transition rates:

j0i!2�1 j1i!4�1 j2i!4�2 j0i.
One vdP oscillator with a drive.—It is known that when

a classical vdP oscillator is coupled to an external sinusoi-
dal drive near resonance, the oscillator phase-locks with
the drive [3]. To study this case, we set H ¼ �ayaþ
ðE=2Þðaþ ayÞ, where E is the driving strength and � is
the detuning of the oscillator from the drive. Then the
Langevin equation in Eq. (5) gets additional terms
�i��� iðE=2Þ on the right-hand side.
In the absence of noise, the phase of � locks to a certain

value when � is small relative to E. For example, when
� ¼ 0, the phase is fixed to 3�=2. In the presence of noise,
the phase is no longer strictly locked, but is still attracted to
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FIG. 1 (color online). Wigner function for an oscillator with-
out external drive. (a)–(c) Classical limit with �2 ¼ 0:05�1:
(a) Wc, (b) Wq, and (c) both Wc (black, dashed line) and Wq

(red, solid line). (d)–(f) Same, but for the quantum limit with
�2 ¼ 20�1.

PRL 111, 234101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

234101-2



some value. This is seen in Fig. 2(a); radial symmetry is
lost because the phase is pulled by the drive.

When � ¼ 0, Wc can be found analytically; it is the
same as Eq. (7) but with an additional term �ðE=2iÞ�
ð�� ��Þ in the square brackets. In the limit �2 ! 1,Wc is
the same as Eq. (8) [Fig. 2(d)]. Thus, in the quantum limit,
the classical model exhibits no trace of the external drive,
because there is infinite quantum noise [Eq. (6)].

In the classical limit, Wq reproduces the locking behav-

ior of the classical model [Fig. 2(b)]. In contrast to Wc, in
the quantum limit, Wq still exhibits locking behavior

[Fig. 2(e)]. The quantum model can be solved perturba-
tively as before, and � now includes off-diagonal elements,
such as j0ih1j. In the limit �2 ! 1,

Wqðj�j; �Þ / ½2ð�2 þ 9�2
1Þ þ 2ð4�2 þ 3E2 þ 36�2

1Þj�j2
� 4Ej�jð�cos�þ 3�1 sin�Þ�e�2j�j2 ; (10)

using polar coordinates: � ¼ j�jei�. Thus, phase pulling
by the drive survives in the quantum model, but not in the
classical model.

Two coupled vdP oscillators.—It is known that two
classical vdP oscillators coupled to each other spontane-
ously phase lock [3]. Here, we assume that the coupling is
reactive, as motivated by trapped ions. Labelling the oscil-
lators as 1 and 2, the model is

_� ¼ �i½H;�� þ �1

X
n

ð2ayn�an � ana
y
n�� �ana

y
n Þ

þ �2

X
n

ð2a2n�ay2n � ay2n a2n�� �ay2n a2nÞ; (11)

where H ¼ Vðay1a2 þ a1a
y
2 Þ, and V is the coupling

strength. The classical Langevin equations are

_�1 ¼ �1ð�1 þ 2�2 � 2�2j�1j2Þ � iV�2 þ �R
1 ðtÞ þ i�I

1ðtÞ;
_�2 ¼ �2ð�1 þ 2�2 � 2�2j�2j2Þ � iV�1 þ �R

2 ðtÞ þ i�I
2ðtÞ;
(12)

where the noise correlations are the same as in Eq. (6).
Using Eq. (12), one can show that in the absence of

noise, the steady state is bistable between in-phase and
antiphase locking. The presence of noise makes the syn-
chronization imperfect, but there is still a tendency towards
phase locking. To characterize the two-oscillator system,
we use a two-mode Wigner function Wcð�1; �

�
1; �2; �

�
2Þ,

which can be thought of as a joint probability distribution
[32]. We integrate out j�1j, j�2j, �1 þ�2, so that Wc is a
function only of �1 ��2.
Figure 3 shows Wcð�1 ��2Þ and Wqð�1 ��2Þ, found

by simulating Eqs. (12) and (11), respectively. As
expected, they are peaked at �1 ��2 ¼ 0, � correspond-
ing to in-phase and antiphase locking. As �2 increases, the
peaks of both Wc and Wq become lower due to increasing

quantum noise. Figure 3(b) shows that for large but finite
�2, phase locking is stronger in the quantum model than in
the classical model; i.e., Wq has higher peaks. In the limit

�2 ! 1, there are no peaks in either Wc or Wq, meaning

that all phase locking is lost.
By solving Eq. (11) perturbatively in 1=�2, one finds

Wqð�1 ��2Þ ¼ 1

2�
þ V2

9��2
2

cos 2ð�1 ��2Þ þO

�
1

�3
2

�
:

(13)

which has peaks at �1 ��2 ¼ 0, �. When �2 ! 1, � ¼
ð23 j0ih0j þ 1

3 j1ih1jÞ � ð23 j0ih0j þ 1
3 j1ih1jÞ, i.e., a product of

mixed states, and the peaks disappear. When �2 is large but
finite, the peaks emerge due to off-diagonal elements
j02ih20j and j20ih02j. Thus, phase attraction between the
oscillators exists when the oscillators occupy states j2i or
higher, but not when they occupy only j0i and j1i.
Infinite number of coupled vdP oscillators.—It is

common to study large systems of globally coupled vdP
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FIG. 2 (color online). Wigner function for an oscillator with
external drive E ¼ �1. (a)–(c) Classical limit with �2 ¼ 0:05�1:
(a)Wc, (b)Wq, and (c) bothWc (black, dashed line) andWq (red,

solid line) after integrating out j�j. (d)–(f) Same, but for the
quantum limit with �2 ¼ 20�1.
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oscillators [7–12]. It is known that an infinite system of
globally coupled classical oscillators spontaneously devel-
ops a synchronized phase. When noise is added, there is
phase transition to the unsynchronized phase [8,11]. We
consider the obvious generalization of Eq. (11) to N iden-

tical oscillators with H ¼ ðV=NÞPm<nðayman þ ama
y
n Þ.

The continuum version was studied in Ref. [42]. The
classical Langevin equations are

_�n ¼ �nð�1 þ 2�2 � 2�2j�nj2Þ � i
V

N

X
m�n

�m

þ �R
n ðtÞ þ i�I

nðtÞ; n ¼ 1; . . . ; N; (14)

with N ! 1. The order parameter is r ¼ ð1=NÞjPn�nj.
The system is unsynchronized when r ¼ 0 and synchro-
nized when r > 0.

In the classical model without noise, both r ¼ 0 and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

2�2
þ 1

q
are stable steady states for any V > 0 [43]. In

the presence of noise, r ¼ 0 is always stable, while the
synchronized state exists only when V is above some
critical value [Fig. 4(a)]. Thus, the synchronized phase
appears via a first-order phase transition [44]. The critical
value of V increases with noise, i.e., with �2. Figure 4(b)
shows the phase diagram.

To solve the quantum model, we use a self-consistent
mean-field approach, which is exact for infinite N. We use
Eq. (2) withH ¼ Vðhayiaþ haiayÞ and look for the steady
states of the resulting nonlinear master equation [13]. The
quantum order parameter is r ¼ jhaij. In the classical limit,
the steady states and phase boundary agree with the
classical model (Fig. 4). However, near the quantum limit,
the phase transition occurs at a much lower value of V in
the quantum model, implying that synchronization is sig-
nificantly stronger in the quantum model than in the
classical one.

This first-order phase transition differs from the second-
order phase transitions in optomechanical arrays [13] and
polariton condensates [42,45–47].

Experimental implementation.—Consider a trapped ion
with ground state jgi and excited state jei. Let one

motional mode be the relevant harmonic oscillator with
resonance frequency !0. Experiments often do sideband
cooling by laser exciting to jei but detuned by �!o, with
subsequent decay back to jgi [19]. This removes one
phonon at a time: jg; ni ! je; n� 1i ! jg; n� 1i. To ap-
proximately implement Eq. (2), one laser excites to jei but
detuned by þ!o, and simultaneously laser excites to an-
other state je0i but detuned by�2!0 [Fig. 5(a)]. This adds
one and removes two phonons at a time, respectively.
(Negative damping could also come from electric-field
noise in the electrodes [48–50].)
An external drive can be added by applying an rf signal.

Two coupled vdP oscillators can be implemented as fol-
lows. First, implement the above scheme for two motional
modes with similar frequencies. Then drive the blue-
sideband transition of both modes using a third excited
state je00i [Fig. 5(b)]. By detuning from the blue sideband,

this leads to the effective Hamiltonian H ¼ Vðay1a2 þ
a1a

y
2 Þ. One can extend this to multiple modes of several

ions, and thereby study collective dynamics of many
oscillators. To characterize the system, one can directly
measure the Wigner function [51–53]. Experimentally
realizable parameters for 171Ybþ are given in the
Supplemental Material [54].
Conclusion.—We have shown that phase locking is more

robust in the quantum model than in the classical model.
For future work, one can study how quantum fluctuations
affect phase locking in an ensemble of nonidentical oscil-
lators [7–12] or on a complex network [55], as is com-
monly studied in the classical regime. One can also study
how quantum fluctuations affect spatiotemporal solutions
on a lattice, such as plane waves [56], vortices [57], and
phase compactons [58]. Finally, since the classical vdP
oscillator exhibits relaxation oscillations and chaos in the
strong-damping limit [3], it would be interesting to inves-
tigate the quantum oscillator in this limit.
We acknowledge Sarang Gopalakrishnan for useful dis-

cussions. This work was supported by NSF through a grant
to ITAMP.
Note added in proof.—After submission of this paper, we

became aware of Ref. [17], which studies the quantum vdP
oscillator with an external drive.
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FIG. 5 (color online). Level scheme for an ion with trap
frequency !o. (a) Negative damping comes from exciting the
blue sideband of jgi ! jei (blue arrow). Nonlinear damping
comes from exciting the double red sideband of jgi ! je0i
(red arrow). (b) Two modes can be coupled by off-resonantly
exciting their blue sidebands of jgi ! je00i.
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Hänsch, K. Vahala, and Th. Udem, Phys. Rev. Lett. 105,
013004 (2010).

[25] N. Akerman, S. Kotler, Y. Glickman, Y. Dallal, A.
Keselman, and R. Ozeri, Phys. Rev. A 82, 061402 (2010).

[26] T. E. Lee and M.C. Cross, Phys. Rev. Lett. 106, 143001
(2011).

[27] Y. Li, H. Li, Y. Zhu, M. Zhang, and J. Yang, Phys. Rev. E
84, 066212 (2011).

[28] G.-D. Lin and L.-M. Duan, New J. Phys. 13, 075015
(2011).

[29] C. Petri, S. Meyer, F. Lenz, and P. Schmelcher, New J.
Phys. 13, 023006 (2011).

[30] Y. Xie, W. Wan, H. Y. Wu, F. Zhou, L. Chen, and M. Feng,
Phys. Rev. A 87, 053402 (2013).

[31] For example, suppose the oscillator is coupled nonlinearly
to the environment (b, by) via the terms ay2bþ a2by.
After tracing out the environment, one obtains the �2

terms in Eq. (2). See Chap. 12 of Ref. [32].
[32] H. J. Carmichael, Statistical Methods in Quantum Optics 2

(Springer, Berlin, 2007).
[33] L. Gilles and P. L. Knight, Phys. Rev. A 48, 1582 (1993).
[34] M. I. Dykman and M.A. Krivoglaz, Phys. Status Solidi B

68, 111 (1975).
[35] R. Grobe and F. Haake, Z. Phys. B 68, 503 (1987).
[36] D. Cohen and S. Fishman, Phys. Rev. A 39, 6478 (1989).
[37] T. Dittrich and R. Graham, Europhys. Lett. 4, 263 (1987).
[38] T. Dittrich and R. Graham, Ann. Phys. (N.Y.) 200, 363

(1990).
[39] H. J. Carmichael, Statistical Methods in Quantum Optics 1

(Springer-Verlag, Berlin, 1999).
[40] H. Risken, The Fokker-Planck Equation: Methods of

Solution and Applications (Springer-Verlag, Berlin, 1996).
[41] M. Ludwig, B. Kubala, and F. Marquardt, New J. Phys. 10,

095013 (2008).
[42] L.M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, Phys.

Rev. Lett. 110, 195301 (2013).
[43] M. C. Cross, J. L. Rogers, R. Lifshitz, and A. Zumdieck,

Phys. Rev. E 73, 036205 (2006).
[44] If there was a sufficiently large Duffing term

P
na

y2
n a2n in

H, the transition would be second order [43].
[45] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402

(2007).
[46] J. Keeling and N.G. Berloff, Phys. Rev. Lett. 100, 250401

(2008).
[47] M.Wouters andV. Savona, Phys. Rev. B 79, 165302 (2009).
[48] L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger,

J. Sterk, and C. Monroe, Phys. Rev. Lett. 97, 103007
(2006).

[49] N. Daniilidis, S. Narayanan, S. A. Möller, R. Clark, T. E.
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