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A method for arbitrarily controlling the phase progression and power flow of electromagnetic fields

within a region of space is introduced. Specifically, we describe how a 2D inhomogeneous, anisotropic

medium can be designed that supports desired spatial distributions of the wave vector and Poynting vector

direction. Plane-wave relations in anisotropic media are used in conjunction with an impedance matching

process to find the required material parameters. The developed formulation allows one to independently

tailor the phase and amplitude of a field profile. The work will find application in the design of

electromagnetic or optical guiding structures and radiating apertures.
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It is well known that an anisotropic material can support
electromagnetic propagation with phase progression and
power flow in different directions [1]. This simple fact
suggests that a carefully designed medium, which is an-
isotropic and spatially inhomogeneous, can tailor phase
and power flow as a function of position. In such a medium,
anisotropy controls the local phase and power flow, while
the inhomogeneity allows spatial variation. This spatial
control of electromagnetic fields can be used to indepen-
dently tailor the phase and amplitude of a field profile.

Transformation electromagnetics [2,3] has provided a
prescription for finding the material parameters needed for
such field manipulation [4–7]. In transformation electro-
magnetics, a desired field distribution is derived from an
initial one through a coordinate transformation, from
which the spatial distribution of material parameters are
computed. However, finding the coordinate transformation
that yields the field of interest is not always intuitive,
straightforward, or necessarily possible.

In this work, a different design approach is introduced.
Material parameters are defined in terms of the phase pro-
gression and power flow [8] within a region of space (the
transformation region), that is embeddedwithin a surround-
ing medium. First, spatial distributions of the wave vector

( ~k) and Poynting vector ( ~S) direction are stipulated within
the transformation region. From these two distributions, the
required anisotropic, inhomogeneous material parameters
needed to support such propagation are found. Plane-wave
relations in anisotropic media are used along with an im-
pedance matching process (which minimizes intercell
reflections) to find the desired material tensors. An addi-
tional condition is also imposed on the material parameters
of the transformation region to ensure it is impedance
matched to the surrounding medium for all illuminations.
This condition stipulates that the determinant of the region’s
material tensors is equal to that of the surrounding medium.

A few simplifying assumptions are made in finding the
material parameters of the anisotropic inhomogeneous
transformation region. In the design approach, it is

assumed that (a) the region is discretized into unit cells
that are much smaller than the guided wavelength and
(b) the discretized cells are displaced (not in the extreme
near field) from a localized source. This allows the elec-
tromagnetic field within each cell to be treated locally as a
plane wave.
The proposed design approach provides independent

spatial control of phase progression and power flow. It
could find use in the design of a wide range of electromag-
netic devices including antennas and beam-forming net-
works, and may also find application in scattering control
[9,10] and holography [11,12]. In addition, the method
could provide a novel approach to signal routing, the
design of mode conversion devices [13], and the generation
of extreme antenna apertures for superdirective radiation
[14] or the excitation of Airy [15–18] and Bessel beams
[19–22]. For example, in antenna design, one may wish to
control power flow across an aperture in order to realize a
given amplitude distribution (beam shape), while at the
same time control phase progression to establish a certain
beam-pointing direction. In the case of a beam former, one
may wish to stipulate an input field distribution (excitation)
and an output field distribution (amplitude and phase dis-
tribution of the antenna elements), with a transition from
one to the other. Therefore, spatial control of phase and
power flow also allows one to independently mold the
phase and amplitude of a field profile. Earlier works have
attempted to control these two quantities through coordi-
nate transformations. The finite embedded coordinate
transformation method introduced in [23] was used to
laterally displace the power flow of an Gaussian beam
while preserving its phase progression. On the other hand
[24], showed how to control the phase front of a beam
while retaining its power flow direction. Here, we demon-
strate simultaneous control over both the phase progression
and power flow of electromagnetic fields without defining
a coordinate transformation.
For simplicity, the proposed design approach is applied

to a 2D medium. In particular, a TMz polarization is
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considered (a TEz formulation can be derived using dual-
ity). Therefore, the nonzero field quantities are the mag-
netic field in the x and y directions (Hx and Hy) and the

electric field in the z direction (Ez). At each point in space,
the relevant material parameters are a 2� 2 relative per-
meability tensor in the x-y plane and a scalar relative
permittivity in the z direction

��� ¼ �xx �xy

�yx �yy

" #
; � ¼ �z: (1)

We will first review plane-wave relations in an anisotropic,
homogeneous medium, and then use them to define mate-

rial parameters in terms of the local wave vector ~k, the

direction of the Poynting vector ~S, and the permittivity
constant �z. For the polarization of interest, Maxwell’s
time-harmonic equations for plane waves are

� j ~k� ~E ¼ �j! ����o
~H; �j ~k� ~H ¼ j!�z�o ~E: (2)

Considering only the nonzero field quantities, these two
vector equations can be rewritten as

�ky
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where ��x ¼ �ð1=�oÞðEz=HyÞ, ��y ¼ ð1=�oÞðEz=HxÞ are

the wave impedances and �kx ¼ kx=ko, �ky ¼ ky=ko are the

wave numbers in the x and y directions, normalized with
respect to their free space values. Using (4), the wave
impedances can be written in terms of the wave numbers,
the ratio � ¼ ��x= ��y, and the permittivity constant

�� x ¼
�kx þ � �ky

�z
; ��y ¼

�kx þ � �ky
��z

: (5)

The ratio � defines the direction (�s) of ~S with respect to

the x axis: � ¼ tanð�sÞ. Therefore, if ~k ¼ kxx̂þ kyŷ and

the ratio � are given at a point in space, the wave imped-
ances are defined by the local permittivity. Expressions for
the permeability tensor can also bewritten using (3) and (4)
as

��� ¼
�ky
�z

�
�kx
� þ �ky

�
þ �xy

� �xy

�yx
�kx
�z
ð �kx þ � �kyÞ þ�yx�

2
664

3
775; (6)

where �xy and �yx can be chosen arbitrarily, while still

ensuring the specified phase and power flow. If it is further
assumed that the permeability tensor ��� is symmetric and
its determinant is equal to that of the surrounding medi-
um’s (assumed to be free space) permeability ���s

j ���j ¼ j ���sj ¼ 1; (7)

the expressions for the permeability tensor simplify to

��� ¼
�z
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The condition on the determinant of the permeability
tensor is an inherent property of transformation electro-
magnetics designs that operate in free space. It ensures that
the transformed region (device) remains impedance
matched to its surrounding medium under all plane-wave

excitations. Therefore, if ~k and � are stipulated, (8) shows
that the local permittivity constant defines the local per-
meability tensor.
Using the expressions for the wave impedances (5) and

permeability entries (8), a systematic design procedure for
finding the material parameters needed to support arbitrary
spatial distributions of phase and power flow will be intro-
duced. The design procedure allows the material parame-
ters of the anisotropic, inhomogeneous transformation
region to be found. To find the material parameters, the
two-dimensional transformation region is discretized into a
grid of unit cells, as shown in Fig. 1(a). Here, a simple

square grid is considered. Next, the ~k and direction of ~S are
stipulated at the center of each unit cell, defining the phase
and power flow within the discretized space [see Fig. 1(a)].
From these two spatial distributions, the permeability of
the unit cells can be written in terms of each cell’s permit-
tivity using (8). Therefore, the unknowns to be solved for
become the unit cell permittivities. They can be found
through an impedance matching process in which the
wave impedances, given by (5), of adjacent unit cells
are matched. Once the permittivities are found through
this process, the permeability entries can be computed
using (8).
A rigorous optimization method for finding the optimal

permittivity distribution that impedance matches adjacent
cells is described in the Supplemental Material [25].
The optimization process adjusts the permittivities of all
unit cells to minimize intercell reflections. For designs

FIG. 1 (color online). (a) The transformation region embedded
within a surrounding medium. The transformation region is

discretized into unit cells, with the wave vector ~k and direction

of ~S stipulated at the center of each cell. (b) A unit cell of the
transformation region. The wave numbers along the edges of the
cell are shown.
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where there are input and desired output field distributions,
a linear transition in wave impedances between the input
and output can be used to find the permittivity distribution
instead of an optimization process. According to (5), the
permittivity of a unit cell can be calculated from one of its

wave impedances, ��x or ��y, if ~k and � are specified. This

simple technique will be used to find the permittivity
distributions for the design examples presented in the
Letter. As noted earlier, once the permittivity values of
the unit cells are found, the permeability tensor is calcu-
lated using (8). Because of (7), the inhomogeneous, aniso-
tropic transformation region remains impedance matched
to its surrounding medium under different excitations.

To demonstrate the potential of the described approach
for controlling electromagnetic fields, a couple illustrative
examples will be shown. Let us consider a vertical electric
current source radiating in an isotropic medium with rela-
tive material parameters:�s ¼ 1, �s ¼ 1. In the examples,
the source’s field will be reshaped over the transformation
region, denoted by the dashed lines in Fig. 3(a). The trans-
formation region is discretized into 10� 60 square unit
cells. The unit cell dimension is assumed to be d ¼ �0=7:2
(4.2 mm) at an operating frequency of 10 GHz, which
results in a transformation region that is 1:4�0 � 8:4�0.
The cylindrical source is located 10 unit cells from the
input boundary [boundary 1 shown in Fig. 3(a)].

Through these examples, we will demonstrate arbitrary
spatial control of the wave vector and Poynting vector
direction within the transformation region. Such control
over electromagnetic fields will be used to transform the
incident field at input boundary 1 to a desired field (am-
plitude and phase) distribution at output boundary 2 [see
Fig. 3(a)].

A few things need to be said about defining the phase
progression and power flow within the transformation
region. In general, the phase progression must be physical.
The difference in wave numbers between a unit cell’s
y-directed edges (�ky ¼ kþy � k�y ) must be equal to the

difference in wave numbers between its x-directed edges
(�kx ¼ kþx � k�x ), as shown in Fig. 1(b). In other words,
the phase delay around the cell edges must sum to zero:
k�y þ kþx � kþy � k�x ¼ 0. The wave vector at the center of

each unit cell can be found by averaging the wave numbers

along the x- and y- directed edges separately: ~k ¼ ðkþx þ
k�x Þx̂=2þ ðkþy þ k�y Þŷ=2. In contrast, the Poynting vector

direction at the center of each unit cell can be set
arbitrarily.

In the examples that follow, phase progression within the
transformation region is systematically defined. The wave
number ky along the input boundary [boundary 1 in

Fig. 3(a)] is dictated by the cylindrical excitation, given
that the transformation region is reflectionless. The wave
number ky along all other y-directed unit cell edges is

assigned, assuming the input phase distribution (ky varia-

tion) at boundary 1 transitions linearly through the

transformation region to the output phase distribution at
boundary 2. The wave number kx along boundary 3 is
assigned arbitrarily. The wave number kx along all other
x-directed cell edges is then found using the relation
�kx ¼ �ky.

The Poynting vector direction for cells along boundary 1
is dictated by the cylindrical excitation. Linear power flow
through the transformation region is assumed when map-
ping the input power density at boundary 1 to the output
power density at boundary 2. A detailed discussion of
the linear power density mapping is provided in [25].
The mapping allows the Poynting vector direction to be
determined at the center of each unit cell within the

FIG. 2 (color online). (a) Spatial distributions of ~k and direc-

tion of ~S that establish a trapezoidal power density and linear
phase profile along boundary 2. (b) Calculated permittivity
distribution assuming a linearly tapered wave impedance, ��x,
from boundary 1 to boundary 2.

FIG. 3 (color online). (a) Time snapshot of the simulated,
vertical electric field (Ez) within the transformation region of
the design shown in Fig. 2. (b) Simulated and ideal power
densities along boundary 1 and boundary 2. (c) Phase profiles
along boundary 1 and boundary 2. y ¼ 0 corresponds to the
center of the transformation region.
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transformation region. Further, the power through the input
and output boundaries is assumed to be equal, in order to
eliminate power leakage through the sides (boundaries 3
and 4) of the transformation region. The permittivity dis-
tribution in the transformation region is calculated using
(5) from the wave vector and power flow distributions and
��x, which is linearly tapered from boundary 1 to boundary
2. It should be pointed out that linear power flow and a
linear phase transition from the input to the output field
profiles is assumed for simplicity. These are only one set of
an infinite number of possibilities.

First, let us consider an example where the transforma-
tion region produces a trapezoidal power density and linear

phase progression at boundary 2. Specifically, a wave
number of ky ¼ 0:20ko is chosen along the boundary 2,

and a wave number of kx¼0 along boundary 3. Figure 2(a)

shows the assigned ~k and direction of ~S vectors with red
and black arrows, respectively. The calculated permittivity
distribution is shown in Fig. 2(b). The permeability tensor
of each unit cell is found by substituting the vector distri-
butions of Fig. 2(a) and the permittivity values of Fig. 2(b)
into (8). A time snapshot of the simulated, vertical electric
field (Ez) is shown in Fig. 3(a). A beam emerging from
boundary 2 at an angle of 12� with respect to the x axis is
observed, verifying that the phase progression along
boundary 2 is ky ¼ 0:20ko. Figures 3(b) and 3(c) plot the

ideal (stipulated) and simulated power density and phase
profiles at boundaries 1 and 2. Close agreement is shown.
An additional design example demonstrating a trapezoidal
output power density and uniform phase is provided in the
Supplemental Material [25]. All electromagnetic simula-
tions were performed using COMSOL MULTIPHYSICS, a
commercial finite element electromagnetic solver.
In the second example, a transformation region is

designed to produce a triangular power density distribution
and uniform phase at boundary 2. Zero phase progression
(ky ¼ 0) is assumed along boundary 2, and a wave number

of kx ¼ 0 along boundary 3. Figure 4(a) shows the assigned
~k and direction of ~S vectors with red and black arrows,
respectively. The required permittivity distribution is plot-
ted in Fig. 4(b). The permeability tensor of each unit cell is
found as in the previous example. A time snapshot of the
simulated, vertical electric field is shown in Fig. 5(a). A
beam emerging from boundary 2 in the normal direction
verifies the desired phase progression along boundary 2:
ky ¼ 0. In Figs. 5(b) and 5(c), the ideal and simulated

power density and phase profiles at boundaries 1 and 2
are plotted, and show close agreement. The reflectionless
performance that results from the matching process can
provide a solution to the impedance mismatch observed in
electromagnetic wave collimators designed through coor-
dinate transformation [26]. Additional examples showing
more extreme output profiles and vector distributions are
provided in the Supplemental Material [25].
We have proposed a method for controlling the power

flow and phase progression of electromagnetic fields in a
two dimensional space. The method enables the design of
reflectionless, inhomogeneous, anisotropic media that can
support prescribed spatial distributions of the wave vector
and Poynting vector direction. This spatial control of phase
and power flow allows the amplitude and phase of a field
profile to be tailored arbitrarily. Specific examples are
reported which show how the proposed method can be
used to tailor the field radiated by a cylindrical source
into desired amplitude and phase profiles. Metamaterials
can be employed to realize the anisotropic, inhomogeneous
materials required in the proposed design approach. At
microwave and millimeter-wave frequencies, circuit-based

FIG. 4 (color online). (a) Spatial distributions of ~k and direc-

tion of ~S that establish a triangular power density and uniform
phase profile along boundary 2. (b) Calculated permittivity
distribution assuming a linearly tapered wave impedance ��x

from boundary 1 to boundary 2.

FIG. 5 (color online). (a) Time snapshot of the simulated,
vertical electric field (Ez) within the transformation region of
the design shown in Fig. 4. (b) Simulated and ideal power
densities along boundary 1 and boundary 2. (c) Phase profiles
along boundary 1 and boundary 2. y ¼ 0 corresponds to the
center of the transformation region.
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tensor (anisotropic) metamaterials [27,28] are particularly
well suited for the implementation of TMz polarized de-
vices. At optical frequencies, plasmonic or dielectric meta-
materials and the concept of nanocircuit elements [29]
could be employed. Future work includes extending the
proposed method of controlling power flow and phase
progression to three dimensions.

This work was supported by a Presidential Early Career
Award for Scientists and Engineers (PECASE) Grant
No. (FA9550-09-1-0696) and an NSF Faculty Early
Career Development Award (ECCS-0747623).

*Corresponding author.
agrbic@umich.edu

[1] A. Yariv and P. Yeh, Optical Waves in Crystals (John
Wiley & Sons, New York, 1984).

[2] U. Leonhardt, Science 312, 1777 (2006).
[3] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,

1780 (2006).
[4] U. Leonhardt and T. G. Philbin, Prog. Opt. 53, 69 (2009).
[5] H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387

(2010).
[6] D. H. Kwon and D.H. Werner, IEEE Antennas and

Propagation Magazine 52, 24 (2010).
[7] N. B. Kundtz, D. R. Smith, and J. B. Pendry, Proc. IEEE

99, 1622 (2011).
[8] G. Gok and A. Grbic, IEEE Trans. Microwave Theory

Tech. 61, 1414 (2013).
[9] D. Sievenpiper, J. Colburn, B. Fong, J. Ottusch, and J.

Visher, in Proceedings of IEEE Antennas and Propagation
Society International Symposium (APSURSI) (IEEE,
Washington, DC, 2005), p. 256.

[10] B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and
D. F. Sievenpiper, IEEE Trans. Antennas Propag. 58, 3212
(2010).

[11] P. Hariharan, Optical Holography: Principles, Techniques
and Applications (Cambridge University Press,
Cambridge, England, 1996), p. 11.

[12] P. Checcacci, V. Russo, and A. Scheggi, IEEE Trans.
Antennas Propag. 18, 811 (1970).

[13] M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave
Theory Tech. 52, 161 (2004).

[14] S. A. Schelkunoff, Bell Syst. Tech. J. 22, 80 (1943).
[15] M.V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[16] G. A. Siviloglou and D.N. Christodoulides, Opt. Lett. 32,

979 (2007).
[17] G. A. Siviloglou, J. Broky, A. Dogariu, and D.N.

Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[18] Y. Hu, G.A. Siviloglou, P. Zhang, N. K. Efremidis, D. N.

Christodoulides, and Z. Chen, in Nonlinear Photonics and
Novel Optical Phenomena, edited by Z. Chen and R.
Morandotti (Springer, New York, 2012).

[19] J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[20] J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58,

1499 (1987).
[21] D. McGloin and K. Dholakia, Contemp. Phys. 46, 15

(2005).
[22] M. Ettore, S.M. Rudolph, and A. Grbic, IEEE Trans.

Antennas Propag. 60, 2645 (2012).
[23] M. Rahm, S.A. Cummer, D. Schurig, J. B. Pendry, and

D. R. Smith, Phys. Rev. Lett. 100, 063903 (2008).
[24] Y. Ke, W. Shu, H. Luo, S. Wen, and D. Fan, J. Europ. Opt.

Soc. Rap. Publ. 7, 12 013 (2012).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.111.233904 for
additional information on the presented method.

[26] D. H. Kwon and D.H. Werner, New J. Phys. 10, 115023
(2008).

[27] G. Gok and A. Grbic, IEEE Trans. Antennas Propag. 58,
1559 (2010).

[28] G. Gok and A. Grbic, IEEE Trans. Antennas Propag. 61,
728 (2013).

[29] N. Engheta, A. Salandrino, and A. Alu, Phys. Rev. Lett.
95, 095504 (2005).

PRL 111, 233904 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

233904-5

http://dx.doi.org/10.1126/science.1126493
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1016/S0079-6638(08)00202-3
http://dx.doi.org/10.1038/nmat2743
http://dx.doi.org/10.1038/nmat2743
http://dx.doi.org/10.1109/MAP.2010.5466396
http://dx.doi.org/10.1109/MAP.2010.5466396
http://dx.doi.org/10.1109/JPROC.2010.2089664
http://dx.doi.org/10.1109/JPROC.2010.2089664
http://dx.doi.org/10.1109/TMTT.2013.2248018
http://dx.doi.org/10.1109/TMTT.2013.2248018
http://dx.doi.org/10.1109/TAP.2010.2055812
http://dx.doi.org/10.1109/TAP.2010.2055812
http://dx.doi.org/10.1109/TAP.1970.1139788
http://dx.doi.org/10.1109/TAP.1970.1139788
http://dx.doi.org/10.1109/TMTT.2003.821267
http://dx.doi.org/10.1109/TMTT.2003.821267
http://dx.doi.org/10.1002/j.1538-7305.1943.tb01306.x
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1364/OL.32.000979
http://dx.doi.org/10.1364/OL.32.000979
http://dx.doi.org/10.1103/PhysRevLett.99.213901
http://dx.doi.org/10.1364/JOSAA.4.000651
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://dx.doi.org/10.1080/0010751042000275259
http://dx.doi.org/10.1080/0010751042000275259
http://dx.doi.org/10.1109/TAP.2012.2194674
http://dx.doi.org/10.1109/TAP.2012.2194674
http://dx.doi.org/10.1103/PhysRevLett.100.063903
http://dx.doi.org/10.2971/jeos.2012.12013
http://dx.doi.org/10.2971/jeos.2012.12013
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.233904
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.233904
http://dx.doi.org/10.1088/1367-2630/10/11/115023
http://dx.doi.org/10.1088/1367-2630/10/11/115023
http://dx.doi.org/10.1109/TAP.2010.2044351
http://dx.doi.org/10.1109/TAP.2010.2044351
http://dx.doi.org/10.1109/TAP.2012.2226228
http://dx.doi.org/10.1109/TAP.2012.2226228
http://dx.doi.org/10.1103/PhysRevLett.95.095504
http://dx.doi.org/10.1103/PhysRevLett.95.095504

