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Excitable localized states, spatial structures which possess both the features of temporal excitable

pulses and of transverse cavity solitons, have been theoretically predicted in model systems as single

pulses of light localized in space with a finite and deterministic duration. We study experimentally the

nucleation of laser localized structures on a device defect and its motion along a spatial gradient. We

demonstrate that in the reference frame of the drifting localized structure, the resulting dynamics presents

the typical features of excitable systems. In particular, for specific parameter values, we observe that the

nucleation of laser localized structures is triggered by noise, while the drift of the localized structure up to

a spatial region where it vanishes provides the deterministic orbit which brings the system back to its

initial rest state. The control of such structures may open the way to novel applications of localized

structures beyond that of simple stationary bits.

DOI: 10.1103/PhysRevLett.111.233901 PACS numbers: 42.65.Tg, 42.55.Px, 42.65.Pc

Localized states are ubiquitous in dissipative nonlinear
systems. In optics, they have been observed in many differ-
ent configurations and materials including atomic vapors,
liquid crystal light valves, and semiconductor microcav-
ities [1,2]. In all these cases, they have been shown to be
stable for an arbitrarily long time even after the perturba-
tion creating them has ceased to exist; i.e., they are studied
in a context of bistability. In contrast to all of these studies
(which focus on stable states), excitability mediated by
localized structures has been recently studied theoretically
in a paradigmatic model for a nonlinear optical cavity [3].
Excitability is a property of many nonlinear dynamical
systems defined by the response of the system to perturba-
tions: Perturbations below a certain threshold decay to
the inital state, while perturbations overcoming a certain
threshold result in the system running through a large and
well-defined excursion in phase space before returning to
its original state. While the most prominent example is, of
course, the neuron [4], many other systems can present this
well-calibrated thresholdlike response, which can result
from one of three well-known phase space configurations.
Examples in optics include active photonic crystals [5] and
optical amplifiers [6] (weakly saturated Hopf bifurcation),
lasers with optical feedback [7] or with saturable absorber
[8,9] (saddle-loop bifurcation), and lasers with optical
injection [10] (saddle node on invariant circle bifurcation).
Beyond the interesting parallel with neural systems, excit-
ability could provide innovative functionalities such as
optical event detection [11].

At the intersection between the phenomena of nonlinear
light localization and excitability, excitable localized struc-
tures offer both the parallel mode of operation typical of
localized states and the thresholdlike response of excitable
systems. Thus, they appear as well-calibrated pulses of
light which are localized in space and after which the
system returns to its initial quiescent state. In the case

studied in Ref. [3], excitability arises from the collision
of a stable limit cycle (oscillating localized state) with the
unstable localized state branch, leading to a saddle-loop
bifurcation close to which the system shows excitable
localized structures. Even in variational systems in which
localized states do not have the possibility to oscillate ‘‘in
place,’’ excitable localized structures have recently been
theoretically analyzed in the presence of gradients and
pinning [12]. In this case, excitability is mediated by the
drift of the localized states. Besides the intrinsic interest
of the underlying phenomena, the distinctive features of
excitable localized structures also opens novel application
perspectives for information processing [13].
In this Letter, we observe experimentally that a drift

instability can lead to excitable laser localized structures
in a very similar way to the theoretical analysis reported in
Ref. [12]. We show that the nucleation of a localized
structure followed by a drift towards a spatial region where
the localized structure vanishes occurs via a finite ampli-
tude and infinite period bifurcation, which is a sufficient
condition for excitable behavior [4]. Close to this bifurca-
tion, we observe noise-induced nucleation of localized
states, while the following localized structure drift and
annihilation are deterministic since they are imposed by a
spatial gradient. This deterministic evolution of stochasti-
cally triggered events provides further evidence of the
excitable character of the drifting laser localized structures.
Beyond excitable localized structures, we also observe an
alternating motion of a localized structure oscillating back
and forthwhen interactingwith both a gradient and a defect.
The experimental system [14,15] consists of two

coupled broad-area (200 �m) vertical cavity surface emit-
ting lasers. One laser (L1, amplifier) is pumped above
transparency and the other one (L2, saturable absorber)
below. The devices are optically coupled in a self-imaging
condition. The system parameters are the temperatures and
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the pump currents of the two devices. An output coupler
gives two detection branches, each of them comprising a
CCD camera, an iris, and a fast detector (DC-8 GHz). We
monitor the time-averaged near field of the devices with
the CCD, and use the iris to select the region of the space to
be monitored. The recorded area has a diameter of about
20 �m, which is slightly larger than the typical dimension
of the localized structures.

We measure the time traces in a spatial region where a
localized structure is known to be stable (pinning on a
defect) under optimal alignment conditions. Under the
alignment conditions considered in the following, the pa-
rameters are slightly outside the range of stationary local-
ized state bistability [15,16].

For specific alignment conditions (and, therefore, spe-
cific spatial gradients) and parameters, the system is in a
stable trivial state (no coherent emission). Upon bias cur-
rent increase, the first observation is the sporadic emission
of bursts [Fig. 1(a)], all rather similar to each other, whose
duration is of the order of 12 ns. For a given current of the
absorber (I2), as the current of the amplifier (I1) is
increased, the trivial state becomes unstable as the time
between two successive pulses (interspike time) decreases
and a clear periodicity appears [Figs. 1(b) and 1(c)]. For
these parameters, the time-averaged near field image on the
CCD consists of a bright 40 �m long and 15 �m wide
region surrounded by homogeneous dark background. The
detector is placed on the brightest part of this region (see
inset in Fig. 1).

Each of the bursts is composed of much faster pulses
separated by 1.8 ns, which is the round-trip time of the
cavity composed by the two devices. This fine structure is,
therefore, associated to the multiple longitudinal modes

which are involved in the dynamics of the system. Even if
there is certainly interest in this very fast time scale, we
chose to focus in this Letter on another relevant dynamical
variable of the system, which is the slow envelope of the
dynamics [17]. Thus, we Fourier filter the time series
allowing only components below 1.3 GHz (thick line on
Fig. 1). Although the choice of this value is arbitrary, we
have checked that the observations reported below do not
depend on the details of the filter, provided that it is
sufficient to smooth out the details of the longitudinal
mode dynamics.
Although the dynamics looks very reminiscent of the

well-knownQ-switching instability in lasers with saturable
absorbers (a situation which leads to excitability in systems
with no spatial degrees of freedom [9]), the typical duration
and period of pulses shown in Fig. 3 are rather far from the
typical time scales of the semiconductor gain medium or
absorber.
In the following, we analyze in more detail the spatial

dynamics of the system around this bifurcation. To this
end, we acquire time series simultaneously from two dif-
ferent detectors in the spatial region of interest. The detec-
tors are aligned along the elongated direction of the bright
area shown on the insets of Fig. 1. Each detector monitors a
20 �m diameter area, whose centers are separated by
23 �m. Typical results are shown on Fig. 2. In the strongly
periodic regime, the occurrence of a pulse in one region of
space is followed by a pulse in the neighboring region with
a delay, and the clear correlation between the two traces
demonstrates a propagation in the transverse dimension.
The fact that the intensity emitted in the area monitored by
D2 increases only upon decrease of the intensity emitted in
the area monitored by D1, calls for an interpretation of the
dynamics in terms of a localized state nucleated in front
of D1, which then drifts across the spatial region of inter-
est. If detector D2 is moved farther away, then no intensity
is detected, which indicates that the structure has reached a
spatial region where it cannot exist due to spatial inhomo-
geneities [18]. This deterministic trajectory (in space)
leads the system back to the initial state, where no structure
exists. We note that even in an ideal (perfectly homoge-
neous) but finite system, the localized structure would
cease to exist when reaching the system’s edge, again
leading to a deterministic lifetime for the localized

(a)

(b)

(c)

FIG. 1 (color online). Single point dynamics for three different
values of the current in the amplifier: (a) I1 ¼ 308:4 mA,
(b) I1 ¼ 310:9 mA, (c) I1 ¼ 315:4 mA, I2 ¼ 5:5 mA. Grey
lines are the measured time series, black ones are the low-
frequency part of the dynamics (1.3 GHz cutoff). Top right
inset: Near field of the amplifier device. The arrow indicates a
material defect line (see text). The data are acquired in the
squared area of which a zoom is shown on the left inset.

FIG. 2 (color online). Spatially resolved dynamics showing
periodic nucleation and drift (I2 ¼ 10:5 mA, I1 ¼ 302:9 mA).
Detector 1 is the continuous line, detector 2 is the dashed one.
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structure. The speed of the localized structure can be
estimated from the time separation between the falling
edges in D1 and D2, i.e., when the structure leaves the
area monitored by each detector or from the duration of the
pulse measured in D2, and the estimated values are coher-
ent (5:2 �m=ns vs 4:8 �m=ns). The motion does not take
place along material defect lines, which can be seen on the
top and left parts of the inset in Fig. 1.

Localized states in models of bistable lasers are known
to be able to move at either constant or oscillating velocity
in the absence of any parameter gradient [19,20]. In the
present case, however, motion always takes place along a
fixed direction which critically depends on alignment. This
suggests that perturbations external to the localized struc-
ture are responsible for the drift. Therefore, we interpret
the periodic pulsing described above in terms of periodic
nucleation and motion of a localized structure in the pres-
ence of a gradient and a local inhomogeneity.

We argue that the limit cycle constituted by this periodic
nucleation andmotion until the structure vanishes arises via
a finite amplitude and infinite period bifurcation and can,
thus, lead to excitable localized structures. Accordingly, we
show that noise can trigger excitable events.

We show on the top panel of Fig. 3 how the average time
between pulses depends on the amplifier bias for four
different values of the absorber bias. The error bars indi-
cate the standard deviation of the time between pulses. In
all cases, we observe a clear dependence of the average
period on the parameter value with a strong increase of the

average period when decreasing the parameter. We inter-
pret this as an indication of the divergence of the period,
which is compatible with the period of a limit cycle arising
via saddle node on a circle or saddle-loop bifurcations
(both of them leading to excitable dynamics). When the
average period is largest, the dynamics consists essentially
in a disordered emission of pulses as indicated by the very
large standard deviation.
Upon amplifier bias increase, this regime is followed by

a decrease of the average value of the interspike time. The
dispersion of the interspike time also strongly diminishes
upon parameter increase, indicating that the dynamics is
more and more periodic. The ratio between the standard
deviation and the average value of the time between pulses
can reach a value of 0.9 (a value of 1 being a distinctive
feature of a Poisson process). On the other hand, the
amplitude of the pulses is very well defined in any case,
as shown on the bottom panel of Fig. 3. This (together with
the very well-defined duration of the pulses within a few
sampling points) indicates that the trajectory followed by
the system in phase space is regular even when the tempo-
ral distribution is disordered. All the data shown in Fig. 3
have been obtained in the exact same configuration (align-
ment and spatial region) for consistency. Even if the evo-
lution of the time interval average and standard deviation
as a function of the pump values do not depend on the
specific realization, the absolute values of the parameters
does depend on the spatial region and alignment configu-
ration in which the measurements are performed.
Histograms of the time between pulses for regimes

are shown in Fig. 4 (left). While the periodicity of the
time series is very clear in case 4(c), the exponential decay
at long times in the other two histograms indicates that
the pulse emission process, when not periodic, can be
described as a noise-induced barrier crossing (see, e.g.,
Ref. [21]), as expected for noise-induced excitable pulses.
In this framework, the cutoff at short times (15 ns) visible
in all these histograms is caused by the refractory time of
excitable pulses.
At variance with the observations reported in Ref. [18],

which were realized in a coherently driven system, the
distribution of time intervals between events in the present

FIG. 3 (color online). Top: Mean value of interspike time as a
function of amplifier pump I1 for different values of the absorber
current. Bottom: Amplitude of the pulses as a function of the
amplifier current for different values of the absorber current.
I2 ¼ 10:5 mA (filled circle), I2 ¼ 7:5 mA (open square), I2 ¼
5:5 mA (open upward triangle), I2 ¼ 1:9 mA (filled star). The
error bars indicate the standard deviation.

(a)
(b)

(c)

FIG. 4 (color online). Left: Histograms of interspike times in
noise-dominated [(a) I1 ¼ 343:9 mA, I2 ¼ 1:9 mA], periodic
[(c) I1 ¼ 343:4 mA, I2 ¼ 5:9 mA], and intermediate regimes
[(b) I1 ¼ 333:6 mA, I2 ¼ 5:9 mA]. Right: Return map of time
intervals corresponding to case (a).

PRL 111, 233901 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

233901-3



case can have a very strong stochastic component. This
characteristic is essentially absent in Ref. [18], where the
nucleation of the localized takes place in a spatial region in
which the trivial solution is unstable. In that case, the small
variation of the period is then due to imperfect control of
the parameters which slowly drift. Here, instead, noise
appears to be sufficient to randomly trigger the nucleation
and drift of localized structures, which are, therefore, well
described in terms of excitable localized states. This is
confirmed by the observation of the return map of time
intervals shown in the right panel of Fig. 4: While fluctua-
tions of the period of a limit cycle would lead to an
accumulation of points in the y ¼ x region, the distribution
of points filling the whole phase space clearly indicates the
random origin of the time intervals. Since this experimen-
tal system involves lasing and not only nonlinear amplifi-
cation, as occurs in driven systems, we propose that the
projection of spontaneous emission noise onto the local-
ized states is sufficient to trigger their nucleation, a situ-
ation much less likely to happen in coherently driven
systems. Of course, other noise sources (current noise,
for instance) could also play a role in the present dynamics.

A low-dimensional phase space (in the presence of
noise) might be sufficient to describe the periodic and
excitable dynamics of localized states observed above,
but such description cannot be reduced to simply a trans-
lation mode. In fact, it must take into account the internal
degrees of freedom of the localized states since they are not
infinitely damped [3], as we illustrate in the following.

For the lowest amplifier bias current values, (i.e., when
the average period is large and not well defined) the time
series sometimes presents an unexpected dynamical fea-
ture shown in Fig. 5. During the interval from 30 to 150 ns,
the power measured in D1 oscillates around some value
without ever reaching the background level (the nonlasing
solution), and, correspondingly, the power observed in D2
oscillates without ever reaching the maximum value cor-
responding to the presence of a localized state. Since an
increase in power in D2 is associated to a decrease in D1
(and the larger the signal in D1, the smaller the signal in
D2), we interpret this dynamics as back and forth motion
of the localized structure close to the position monitored by
D1. Indeed, it has recently been shown in Ref. [12] that a
localized state interacting with defects and submitted to a
gradient can oscillate in this way whenever the defect is

strong enough to prevent instantaneous drift away of the
localized state.
The amplitude of these oscillations increases until, at

time t � 200 ns, the localized structure detaches and fully
passes in front of D2, restoring the regime of mostly
periodic nucleation and drift that were observed previ-
ously. The back and forth oscillation events are extremely
rare as compared to regular drift events, and, therefore, do
not clearly appear in the histograms [slight shoulder on the
left part of the Figs. 3(b) and 3(c) histograms].
Clearly, the back and forth motion of the localized

structure close to its nucleation site departs from the
‘‘particlelike’’ description of localized structure under ex-
ternal perturbations whose inertia is completely hidden by
dissipation [22]. Since this inertialike behavior of the
localized structure results from the external perturbation
coupling to the structure’s internal modes, it is understand-
able that the oscillatory motion is observed at the very edge
of the localized structure’s stability domain [23] (see also
Ref. [12]), and, therefore, in the parameter range in which
the periodicity breaks up and is strongly influenced by
noise.
In conclusion, we have shown that the destabilization of

the nonlasing solution in a system of coupled broad-area
lasers in an absorber-amplifier configuration can occur via
periodic or stochastic emission and deterministic drift and
cancellation of localized structures. Since this limit cycle
arises with a finite amplitude, the corresponding bifurca-
tion possesses the characteristics required for the genera-
tion of excitable localized structures. Indeed, we have
observed the random emission of deterministic pulses con-
stituted by the nucleation, drift, and annihilation of single
laser localized structures. In addition, to noise-triggered
excitable localized structures, we have also observed oscil-
lations of localized states around a pinning location. This
dynamics, which departs from the ‘‘Aristotelian particle’’
description of a localized structure’s motion, requires tak-
ing into account the interaction of the structure with a
defect as an additional phase space dimension.
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