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We demonstrate coherent control of population transfer between vibrational states in an optical lattice

by using interference between a one-phonon transition at 2! and a two-phonon transition at!. The ! and

2! transitions are driven by phase- and amplitude-modulation of the lattice laser beams, respectively. By

varying the relative phase of these two pathways, we control the branching ratio between transitions to the

first excited state and those to the higher states. Our best result shows a branching ratio of 17� 2, which is

the highest among coherent control experiments using analogous schemes. Such quantum control

techniques may find broad application in suppressing leakage errors in a variety of quantum information

architectures.
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Coherent control of quantum systems is an exciting
paradigm that has been applied in a number of contexts
ranging from chemistry to condensed-matter physics
[1–6]. In this Letter, we demonstrate that a common
coherent-control technique (‘‘1 versus 2’’) [7] may be
extended to control leakage out of a bound-state manifold,
by using coupling pulses of appropriately tailored symme-
tries. In particular, we show that by using this technique, it
is possible to enhance the coupling of vibrational states in
an optical lattice while reducing leakage into ‘‘lossy’’
states. This provides a new tool for the control of motional
states in optical lattices, and is promising for applications
in areas such as quantum information more broadly.
Quantum information processing relies on the coherent
manipulation of quantum two-level systems (qubits). In
reality, any qubit is a subspace of a larger Hilbert space,
meaning that one possible error is leakage to the states
outside the computational subspace. Leakage error has
been a major concern in many quantum information pro-
cessing devices [8], including neutral atoms in optical
lattices [9,10], superconducting qubits [11,12], trapped
ions [13], and cavity QED [14]. In the present experiment,
we study a qubit composed of quasibound vibrational
states in a tilted-washboard potential possessing unbound
states as well, and demonstrate a coherent control tech-
nique that greatly increases the branching ratio of the
desired transition into an excited quasibound state to the
‘‘leakage’’ transitions into unbound states.

The coherent control scheme we use is analogous to
the one-photon versus two-photon interference scheme
(1 versus 2) [7], which we show here can be adapted to
control vibrational excitations by careful control of the
symmetry of the excitation pathways. In the 1 versus 2
scheme, control is achieved by coupling the initial
state to the desired final state through two simultaneous,
phase-coherent pathways—in one path, the transition is

accomplished via absorption of one photon at frequency
2!; in the other, via absorption of two photons each at
frequency !. The total transition amplitude is the coherent
sum of the amplitudes for these two processes, allowing the
final-state probability to be controlled by varying the rela-
tive phase of the ! and 2! transitions. This concept has
been applied to coherently control the photoionization of
atoms [2], photocurrents in semiconductors [3] and gra-
phene [4], and photodissociation of molecules [5], to
name a few proof-of-principle examples. There have also
been proposals for using this technique to study the
quantum-to-classical transition [15], to control photocur-
rents in carbon nanotubes [16] and molecular wires [17], as
well as to control the populations of different electronic
states in semiconductor quantum wells [18] and molecular
wires [19].
In our Letter, we extend the application of this technique

into the domain of quantum information by demonstrating
an analogous scheme based on one-phonon versus two-
phonon interference in a two-vibrational-state system.
Using this technique, we succeed in suppressing leakage
during coherent coupling of the two lowest vibrational
states. Our method is applicable to situations where leak-
age is a major source of error, such as the exchange gate
experiments with neutral atoms in optical lattices [9]. The
Hamiltonian of the system we study also has the same form
as the one for superconducting qubits [11], suggesting that
this method should be useful for suppressing leakage errors
in such systems as well.
The two-level system we use is made up of the lowest

two vibrational states of an atom trapped in each potential
well of an optical lattice. Because our one-dimensional
optical lattice is in the vertical direction, the atoms are
actually trapped in a tilted-washboard potential, which is
the sum of the periodic lattice potential and the linear
potential due to gravity. An atom in the tilted-washboard
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potential possesses quasibound vibrational states, known
as Wannier-Stark states [20,21]. We use a shallow tilted-
washboard potential that only has two long-lived Wannier-
Stark states centered on each potential well. Treating these
two states as a qubit, we consider any coupling into the
higher excited vibrational states as leakage. To rotate this
qubit, we coherently transfer population from the ground
state to the excited state by a one-phonon excitation. The
one-phonon excitation is experimentally realized by phase
modulation (PM) of one lattice laser beam at ! with an
acousto-optic modulator (AOM) [22], where ! is the reso-
nance frequency between the ground and first excited states
and is measured to be 2�� ð4:99� 0:01Þ kHz for this
experiment [23]. The PM creates a series of sidebands at
!L � q!, where !L is the laser frequency and q is an
integer. A Raman transition involving one photon at !L

and another photon at !L �! can couple two vibrational
states with energy separation of @!. The effective interac-
tion has (in the reference frame that follows the displace-
ment of the potential) the same form as a dipole
Hamiltonian [as will become clear in Eq. (1) below], and
therefore couples vibrational states of opposite parity. We
refer to this creation of a vibrational excitation via absorp-
tion of a single modulation quantum at ! as a one-phonon
excitation at!. An atom in the ground state can absorb one
phonon at ! and be transferred into the excited state, but it
can also absorb two phonons at ! and leak out of the qubit
space, as shown in case (i) of Fig. 1(a). To mitigate this
leakage, we introduce a second pathway of excitation, a

one-phonon excitation at 2!, as shown in case (ii) of
Fig. 1(a). Experimentally, we perform amplitude modula-
tion (AM) on the other lattice laser beam at 2! with an
AOM, which creates two sidebands of!L � 2!. A Raman
transition involving one photon at !L and another photon
at !L � 2! can couple two vibrational states with energy
separation of 2@!. The even symmetry of the amplitude
modulation allows this process to directly couple states of
like parity. We refer to this creation of a vibrational exci-
tation via absorption of a single modulation quantum at 2!
as a one-phonon excitation at 2!. When the two-phonon
transition at ! and the one-phonon transition at 2! are
both driven, as shown in case (iii) of Fig. 1(a), the two
pathways interfere, such that the leakage probability
depends on their relative phase. By adjusting the pathways
to have equal but opposite amplitudes, one could in prin-
ciple suppress the leakage completely.
We use a sample of 85Rb atoms laser cooled to approxi-

mately 10 �K, with a sufficiently low density (roughly
109 atoms=cm3) that we can neglect interactions between
atoms. Our optical lattice is formed by two 15 mW laser
beams, red detuned by 30 GHz from the D2 line, which
intersect at an angle of 49�, resulting in a lattice spacing of
a ¼ 0:930 �m, which is much larger than the 60 nm
thermal de Broglie wavelength of the atoms. There is
therefore vanishing coherence between neighboring wells
of the lattice. This lattice has a typical depth of 19@!r,
where !r ¼ 2�� h=ð8ma2Þ ¼ 2�� 685 Hz is the effec-
tive recoil frequency and m is the mass of one 85Rb atom.
Because of the 1.5-mm rms width of the Gaussian lattice
beams, the lattice depth is inhomogeneously broadened;
the distribution of lattice depths shown in the inset of
Fig. 3(b) below is measured using the technique in
Ref. [24]. The linear potential of gravity has a value of
2:86@!r per lattice spacing, and for these parameters there
are only two long-lived Wannier-Stark states centered on
each lattice well [20]. By adiabatically lowering the depth
of the optical lattice until only one Wannier-Stark state is
supported, and then adiabatically increasing it again, we
prepare the atoms in the lowest Wannier-Stark state. This
same filtering technique [25] is used to measure the pop-
ulations of the different vibrational states after excitation.
To investigate the interference between the two different

transition pathways, we vary the relative phase ��
between the two-phonon transition at ! and the one-
phonon transition at 2!, while keeping the probability of
each transition constant. The probability of each transition
depends on the modulation amplitudes APM, AAM, and
modulation duration tm. We always perform the same
modulation duration tm ¼ 2n�=! for both PM and AM,
where n is an integer. Figure 1(b) shows examples of PM
and AM with n ¼ 4. The modulation duration we use in
this experiment is always much smaller than the measured
photon scattering time of about 50 ms. The relative phase
�� between the two transitions depends on the difference
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FIG. 1 (color online). (a) An atom in the ground state can leak
out of the qubit space by absorbing either [case (i)] two phonons
at ! (dashed arrows) or [case (ii)] one phonon at 2! (solid
arrow). When the two transitions occur together [case (iii)], the
probability of leakage depends on the relative phase between
these two transitions. (b) Experimentally, the !-phonon transi-
tion is realized by phase modulation (PM) of one lattice beam at
! (i). The 2!-phonon transition is realized by amplitude modu-
lation (AM) of the other lattice beam at 2! (ii). The relative
phase �� between the two transitions is controlled by the
difference �� between the initial times when PM and AM are
applied, through a relationship of �� ¼ 2!��.
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�� between the initial time of PM and AM, through the
relationship �� ¼ 2!��. In the first part of the experi-
ment, we measure the probabilities of leaking out of the
qubit space PL, of being transferred into the excited state
Pe, and of being left in the ground state Pg, when �� is

varied and APM, AAM, and n are kept constant. Typical
oscillation curves of Pg, Pe, and PL vs �� measured in the

experiment are shown in Fig. 2, clearly demonstrating
interference between the two transition pathways. The
constructive and destructive interference conditions for
PL are found to be �� ¼ ð2lþ 1Þ� and �� ¼ 2l�,
respectively, where l is an integer. Figure 2 shows that
compared to the leakage PPM

L when PM alone is applied,

PL is suppressed at the points where destructive interfer-
ence occurs. The probability of transition into the excited
state is increased at the same points. This demonstrates that
the leakage due to the two-phonon transition at ! is sup-
pressed by simultaneously driving the one-phonon transi-
tion at 2! with the appropriate phase.

We further study the dependence of this interference on
the leakage probability PPM

L by measuring oscillation

curves of PL vs �� for different values of the control
parameter APM, while AAM and n are kept constant. As
all the measured interference fringes show the same con-
structive and destructive interference conditions, we focus
our study on the dependence of the visibility on PPM

L . We
denote the leakage probability when constructive (destruc-
tive) interference conditions are met as Pmax

L (Pmin
L ), which

means visibility can be expressed as ðPmax
L � Pmin

L Þ=
ðPmax

L þ Pmin
L Þ. To find Pmax

L and Pmin
L , we perform a sinu-

soidal fit for each interference fringe with the oscillation
frequency held constant at 10 kHz. Figure 3(a) shows a plot
of visibility versus log2ðPPM

L =PAM
L Þ, where PAM

L is the
leakage probability when AM alone is applied. We find
experimentally (red dots) that the maximum visibility

occurs when PPM
L ¼ PAM

L , as would be expected from an
idealized two-path interference (two-path) model (solid
black line). Such a model assumes the total probability
amplitude for leakage is the sum of the amplitudes for the
two individual transition pathways, with perfect phase

coherence. We would then expect Pmax;min
L ¼ PPM

L þ
PAM
L � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PPM
L PAM

L

q

. Although the experimental result

agrees with the two-path model as to when the maximum
visibility should occur, it shows lower visibility.
We find, with a simulation of our experiment, that the

discrepancy in visibility between the experimental results
and the idealized two-path model is due to the coupling
into neighboring potential wells. To perform the simula-
tion, we consider the Hamiltonian for an atom in the tilted-
washboard potential H0 ¼ p2=ð2mÞ þU0sin

2ð�x=aÞ þ
mgx, where U0 is the optical lattice depth and g is the
acceleration due to gravity. By introducing dimensionless
parameters ~x ¼ �x=a, ~p ¼ ap=ð�@Þ, r ¼ U0=ð@!rÞ, and
s ¼ mga=ð@!rÞ, we can write the dimensionless time-
dependent Hamiltonian in the reference frame that follows
the displacement of the potential [20] in the form

~HUðtÞ ¼ ~p2 þ rsin2~xþ s

�
~x�

€�ðtÞ
2

~xþ r�ðtÞsin2~x; (1)

where �ðtÞ ¼ APMð1� cos!tÞ is the displacement of the
tilted-washboard potential and �ðtÞ¼AAMsin½2!ðt���Þ�
is the fractional potential depth modulation, as shown in
Fig. 1(b). Using the Hamiltonian [Eq. (1)], we employ a
split-operator method to numerically solve the time-
dependent Schrödinger equation with the ground state as
the initial state. In this simulation, we find that the total
leakage is made up of both leakage to other states in the
same well and into other wells. Although we see interfer-
ence for both kind of leakage in our simulation, the de-
structive interference happens at different times for the two
channels. We believe this is the major cause of the reduced
visibility, as shown in Fig. 3(a). Further study of the
simulation results shows that the total leakage PPM

L has a
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FIG. 2 (color online). The oscillation curves of Pg (green
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PM and AM are applied together. The control parameters of PM
and AM used for these interference fringes are n ¼ 4, APM ¼ 8�,
AAM ¼ 10%.
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monotonically increasing but nonlinear dependence on
APM when tm is fixed. It also shows that, for APM corre-
sponding to the total leakage above our experimental un-
certainty, the ratio of the same-well leakage to the interwell
leakage decreases as APM increases when tm is fixed. This
means, in our experiment, the ratio of the same-well leak-
age to the interwell leakage decreases as PPM

L increases.
Hence our coherent control scheme works better for small
PPM
L , where the interwell leakage is much smaller than the

same-well leakage and can be safely ignored. To compare
our simulation to experimental results, we average the
simulation results for each lattice depth r over the distri-
bution of lattice depths the atoms actually experience, as
shown in the inset of Fig. 3(b). In Fig. 3(b) we plot Pmax

L

(Pmin
L ) vs PPM

L from these averaged simulation results to
compare with the experimentally measured ones. The
simulation results (red and blue solid lines) agree much
better with the experimental data (red squares and blue
triangles) than the idealized two-path model (red and blue
dashed lines).

In order to test the effectiveness of this coherent control
technique, we carry out a search for the best branching
ratio in the parameter space of APM, AAM, and n, while
keeping �� ¼ 0 (where the destructive interference
occurs). We define the branching ratio as the probability
of transition into the excited state divided by the probabil-
ity of leakage, B ¼ Pe=PL. If we could completely sup-
press the leakage, the branching ratio B would go to
infinity. It would not be useful to increase the branching
ratio by reducing both transition probabilities simulta-
neously, so we study both figures of merit B and Pe.
Figure 4 shows B vs Pe on a log-log graph for a typical
set of our experimental data, where n ¼ 2. For each curve
in the graph, we hold PPM

L constant and plot the branching

ratio in the absence of AM as a black circle for reference.
All the other points on the same curve correspond to differ-
ent values of PAM

L (experimentally, different values of

AAM). As we have learned that the two-path model does
not work perfectly for large values of PPM

L and PAM
L , we

expect our coherent control technique to work better for
small n, APM, and AAM. This is confirmed by our experi-
mental results. For n > 5, we never observe any suppres-
sion of the leakage. For n � 5, the branching ratio is
always higher for smaller APM with a given value of Pe;
one can see this in Fig. 4. For a given value of APM,
increasing the amplitude of AM at first decreases the
leakage while simultaneously increasing the excitation
probability (and hence the branching ratio). This process
reaches an optimum, after which the leakage begins to
grow again and the branching ratio declines. The largest
enhancement in branching ratio was seen for the smallest
value of APM tested; for the largest values of APM, very
little improvement was observed. This agrees with the
simulation: when PAM

L is too large, we expect the interwell

leakage to become significant, and the degree of leakage
suppression is reduced. The largest increase we observed in
branching ratio was by a factor of 3:5� 0:7, achieved for
n ¼ 2 and APM ¼ 8� when AAM was set to 10%: the
resulting branching ratio was 17� 2. Experimental uncer-
tainties prevent us from measuring smaller values of PL,
but our observations are consistent with the expectation
that the enhancement continues to improve for lower drive
amplitudes. In summary, we have succeeded in reducing
the leakage down to a level limited only by our measure-
ment accuracy.
To conclude, we have experimentally demonstrated a

novel coherent control technique for effectively suppress-
ing the leakage error for a two-level system. It is the first
coherent control experiment on vibrational excitations in
an optical lattice. Our experiment shows that leakage can
be suppressed by interference between a two-phonon tran-
sition at ! and a one-phonon transition at 2! during the
coherent population transfer between the ground and ex-
cited states of an atom in a tilted-washboard potential.
Using this technique, we are able to simultaneously sup-
press the leakage and increase the transition probability
into the excited state. Although our data and analysis show
that there are other leakage transitions when the excitation
becomes large, it may well be possible to engineer the
interference conditions for multiple interference pathways
through pulse engineering techniques such as GRAPE [26].
The best achieved branching ratio B ¼ Pe=PL in our
system was 3:5� 0:7 times the branching ratio in the
absence of coherent control. We believe that similar tech-
niques will prove useful for minimizing leakage in a
variety of quantum information architectures, and particu-
larly in those which rely on periodic or washboard poten-
tials, including both optical lattices and superconducting
qubits.
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