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The excursion set approach provides a framework for predicting how the abundance of dark matter

halos depends on the initial conditions. A key ingredient of this formalism is the specification of a critical

overdensity threshold (barrier) which protohalos must exceed if they are to form virialized halos at a later

time. However, to make its predictions, the excursion set approach explicitly averages over all positions in

the initial field, rather than the special ones around which halos form, so it is not clear that the barrier has

physical motivation or meaning. In this Letter we show that once the statistical assumptions which

underlie the excursion set approach are considered a drifting diffusing barrier model does provide a good

self-consistent description both of halo abundance as well as of the initial overdensities of the protohalo

patches.

DOI: 10.1103/PhysRevLett.111.231303 PACS numbers: 95.35.+d, 98.62.Gq

Building upon the seminal work of Press and Schechter
[1], the excursion set approach [2–5] is the most widely
developed formalism for estimating how halo abundances
depend on the background cosmology. Rather than directly
predicting the comoving density of halos dn=dM in the
mass range [M, Mþ dM], it provides an estimate of
the mass fraction in halos ðM=�Þdn=dM, where � is the
comoving background density.

The approach uses the fact that, at any randomly chosen
point in the initial density fluctuation field, the overdensity
� performs a random walk as a function of the smoothing
scale R. Since initial fluctuations are small, this scale can
be associated with a mass M ¼ �VðRÞ, where VðRÞ / R3

is the comoving volume of the filter that was used to
smooth the field. The approach assumes that the mass
fraction ðM=�Þdn=dM equals the fraction of random
walk trajectories F ½MðRÞ� for which R is the largest scale
on which �ðRÞ exceeds a critical threshold value �th.

Thus, the approach has two key ingredients. The first is
�th, which is assumed to be simply related to the physics of
halo formation. For example, the simplest excursion set
formulas equate �th with the value �sc associated with the
collapse of an initially homogeneous overdense sphere [6].
The second is the ensemble of walks which must cross �th.

The full set of walks, associated with all positions in the
initial field, is determined by the statistics of the initial
density fluctuation field and the filter functionW. How one
should average over this ensemble is not usually stated
explicitly. The excursion set approach implicitly assumes
that the appropriate average is over the entire ensemble.
However, halos have been shown to collapse around

special positions in the initial density field [7]; e.g.,
protohalos are often local peaks in the smoothed field
�ðRÞ [8]. Hence, if one is not averaging over the special
subset of walks around which collapse occurs, and for
which the physics is presumably the simplest, then it is
not a priori guaranteed that �th should be simply related to
�sc. This and other issues have led to the question of
whether or not the excursion set approach is self-consistent
[7,9,10].
In this Letter we show that if one considers the statistics

of all (rather than special) walks having to cross an effec-
tive boundary—one which may not be the same as that
associated with models of halo collapse—then one can
indeed build a self-consistent excursion set theory.
We perform our analysis using halos identified in N-body

simulations of the DEUS consortium [11]. These are
described in Refs. [12–14] and are publicly available through
the DEUVO database [15]. The simulations of a �CDM
model calibrated to the WMAP–5 yr data with �8 ¼ 0:79,
have box lengths of 162, 648, and 2592 h�1 Mpc, respec-
tively, with 10243 particles. They were realized using the
RAMSES code [16]; halos were found using an friend-of-
friend finder with link length b ¼ 0:2.
Most excursion set analyses simplify considerably if one

works, not with the smoothing scale R or the mass M, but
with the variance S of the walk height: h�2i � �2 � S
where SðRÞ ¼ ð1=2�2ÞRdkk2PðkÞ ~W2ðk; RÞ. For �CDM,

S is a monotonically decreasing function of R or M. Since
S is a deterministic function ofM, if one thinks of the walk
height � as being the sum of many steps, then the problem
is to find the smallest S at which
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� � �th; (1)

where we will sometimes call �th the ‘‘barrier height.’’
In the simplest version of the approach, �th is assumed to

be a constant, independent of spatial position and smooth-
ing scale [2]. The next level of complication allows �th to
be a function of scale S, but not of position [7]. Finally, one
may imagine that �th depends both on S and on position
[7,17,18]. Whereas the simplest version is associated with
the spherical collapse model, the latter two arise naturally
in ellipsoidal collapse models where the initial overdensity
is not the only parameter that determines the collapse
[7,19–23]. In such models, one may write

� � �th � �BðSÞ þ B; (2)

where �BðSÞ is a deterministic function of S alone which
encapsulates the main features of the ellipsoidal collapse,
and B is stochastic. Though the original ellipsoidal col-
lapse model suggests that B is non-Gaussian [17,24,25],
in what follows, we will assume that B is independent
of � and has a Gaussian probability distribution function,
with zero mean and variance DBS. In fact, such a simple
double-Gaussian drifting diffusing barrier model posses a
number of interesting properties [26–29].

Written this way, one may think of the right-hand side of
Eq. (2) as being a stochastic barrier which � must cross.
The associated first crossing distribution F ðMÞdM ¼
F ðSÞdS is trivially related to the one in which there is no
stochasticity by noting that like �, �� B is also Gaussian
with mean zero: only the variance is S ! Sð1þDBÞ.
However, the first crossing distribution of a drifting deter-
ministic barrier is, in general, a rather complicated function
of �BðSÞ and S which depends on the smoothing filter W.

The dependence on W is easy to appreciate. For
Gaussian initial conditions, and a filter which allows one
kmode at a time (hereafter sharp k), the steps in a walk are
uncorrelated with one another, whereas for a filter which is
a top hat in real space (hereafter sharp x) the steps are
correlated. The sharp-x filter is the one most often used to
define halos and to model the physics of halo formation
and collapse, but the associated correlations between steps
complicate the excursion set estimate of F ðSÞ. These can
be accounted for using numerical (Monte Carlo) [2] or
perturbative computational methods [27,30], or other
approaches [31–34].

There is a sense in which stochastic barrier models such
as this one differ fundamentally from a deterministic
barrier model. Namely, the condition �� B ¼ �BðSÞ may
be satisfied at many different values of � [17]. We will use
�1x to denote the value of � at first crossing and �ð�1x; SÞ
its distribution.

If B is deterministic (i.e., DB ¼ 0), then �ð�1x; SÞ is a
Dirac delta function centered on �B. We can derive an
expression for �ð�1x; SÞ by first noticing that in the coor-
dinate system (g1, g2) where g2 ¼ B=

ffiffiffiffiffiffiffi
DB

p
and g1 ¼ �, the

crossing condition � ¼ �BðSÞ þ B defines a line. It is in this

sense that it is better to not think of the ‘‘barrier’’ to be
crossed as being ‘‘stochastic,’’ but as a two-dimensional
random walk crossing a deterministic barrier (the line).
Moreover the fact that this barrier is a line means that it is
much more convenient to think of the 2D walk as taking
steps which are parallel and perpendicular to the barrier.
Therefore, one should rotate the coordinate system to

gþ ¼ ðg1 �
ffiffiffiffiffiffiffi
DB

p
g2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
;

g� ¼ ðg1
ffiffiffiffiffiffiffi
DB

p þ g2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
:

(3)

Notice that hgþi ¼ hg�i ¼ 0 and hg2þi ¼ hg2�i ¼ S and
hgþg�i ¼ 0. At �1x ¼ �BðSÞ þ B ¼ �BðSÞ þ g2

ffiffiffiffiffiffiffi
DB

p

gþ ¼ �BðSÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
;

g� ¼ �BðSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DB=ð1þDBÞ

q
þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
;

(4)

making g2 ¼ g�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p � �BðSÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DB=ð1þDBÞ

p
and

hence

�1x¼ �BðSÞþg2
ffiffiffiffiffiffiffi
DB

p ¼ �BðSÞ
1þDB

þg�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DB

1þDB

s
: (5)

If we define �1x � �BðSÞ=ð1þDBÞ, then this shows that
the distribution of �1x ��1x is just a rescaled version of
that of g� subject to the constraint that gþ crossed
�BðSÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þDB

p
for the first time on scale S.

When both � and B have been smoothed with the
same filter then g� is a zero-mean Gaussian with variance
S [26], so

�ð�1x;SÞ¼e�ðð�1x��1xÞ2=2Deff
B SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Deff
B S

q whereDeff
B ¼ DB

1þDB

: (6)

But if the two filters are different, then one may expect a
small correction to the above formula. Note that the argu-
ment above is independent of the specific choice of �BðSÞ,
so it is valid for any �BðSÞ, not just the special case where
the barrier is a constant independent of S. In this respect,
�ð�1x; SÞ is much simpler than is F ðSÞ itself.
Notice that �BðSÞ and DB are the same quantities which

appear in the first crossing distribution. Therefore, if the
excursion set approach is self-consistent, then �ð�1x; SÞ,
with parameters calibrated from fitting fðSÞ to halo counts
in N-body simulations, should provide a good description
of the distribution of �1x measured in the same simulations.
Previous work [27,28,35] has shown that F ðSÞ, associ-

ated with a linear barrier

�BðSÞ ¼ �sc þ �S; (7)

provides a good description of the mass fraction in halos
when � has sharp-x smoothing and B is sharp-k smoothed,
so we will use this two-filter setup in what follows. This
assumes that the collapse conditions at different scales are
uncorrelated. Note that this means the smoothing scales
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associated with the filters Rk and Rx have been matched by
requiring hB2ðRkÞi ¼ DBh�2ðRxÞi. This makes the scale of
the sharp-k filter (which we use for B) about a factor of 2
smaller than that for the sharp-x filter (which we use for �).

The multiplicity function fð�Þ � 2SF ðSÞ obtained
using the perturbative path-integral method of Ref. [30]
is given by

fð�Þ ¼ f0ð�Þ þ fm�m
1;�¼0ð�Þ þ fm�m

1;�ð1Þ ð�Þ þ fm�m
1;�ð2Þ ð�Þ (8)

with

f0ð�Þ ¼ �sc

�

ffiffiffiffiffiffi
2a

�

s
e�a �B2=2�2

;

fm�m
1;�¼0ð�Þ ¼ �~�

�sc

�

ffiffiffiffiffiffi
2a

�

s �
e�ða�2

sc=2�
2Þ � 1

2
�

�
0;
a�2

sc

2�2

��
;

fm�m
1;�ð1Þ ð�Þ ¼ �a�sc�

�
~�Erfc

�
�sc

ffiffiffiffiffiffiffiffiffi
a

2�2

r �
þ fm�m

1;�¼0ð�Þ
�
;

fm�m
1;�ð2Þ ð�Þ ¼ �a�

�
�

2
�2fm�m

1;�¼0ð�Þ þ �scf
m�m
1;�ð1Þ ð�Þ

�
;

where ~� ¼ a� ¼ �=ð1þDBÞ [28]. (Our expression for
fm�m
1;�ð2Þ has a term Oð�2Þ corrected in Ref. [36].) Note that

in the case of a deterministic linear barrier (DB ¼ 0) and a
sharp-k filter (� ¼ 0) we recover the solution of Ref. [5].

For �CDM, �c ¼ 1:673 and � ¼ 0:465, so Eq. (8) has
two free parameters: � and DB. We determine these by
fitting Eq. (8) to the DEUS halo counts, finding � ¼
0:12� 0:1 and DB ¼ 0:40� 0:03. Figure 1 shows that,
for this pair of values, the discrepancy between Eq. (8)
and the numerical data at z ¼ 0 is �5%, which is

consistent with Refs. [27,28,35] and with numerical uncer-
tainties on the mass function [14]. Figure 1 also shows that
Eq. (8) provides a similarly good description of the asso-
ciated first crossing distribution obtained by direct
Monte Carlo simulation of the sharp-x � and sharp-k B
walks consistently with the findings of Ref. [28]. Note in

particular that 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p ¼ ffiffiffiffiffiffiffiffiffi
0:71

p
explains the appear-

ance of the numerical factor multiplying �sc in Ref. [37].
We now turn to the question of whether this is a self-

consistent description. If it is, then�ð�1x; SÞ measured for
the same walks used to produce Fig. 1 should provide a
good description of the distribution of �1x measured in the
DEUS simulations. To estimate this in the simulations we
select a random particle for each halo of mass MðRÞ and
evaluate the overdensity �1x within a sphere of radius R ¼
ð3M=4��Þ1=3 around it in the initial conditions. Choosing
a random halo particle (rather than the one at the protohalo
center, say) is crucial, since this makes the measurement
correspond to the quantity which the usual excursion set
calculation returns [9]: i.e., an average over all positions in
the initial field. In contrast, the particle that lies closest to
the initial center of mass represents a special subset of all
walks [7]. We will consider such walks shortly.
Binning in S yields the black histograms in Fig. 2.

Our values of S ¼ 1, 2, and 3 correspond to masses
M=1012M� ¼ 52, 7.6, and 2.2 (each bin containing 2265,
31235, 5241 halos, respectively). The blue symbols
show �ð�1x; SÞ obtained from the same excursion set

FIG. 1 (color online). Upper panel: abundance of friend-of-
friend (b ¼ 0:2) halos from N-body simulations (black sym-
bols), and fð�Þ of Eq. (8) (black solid line) with � ¼ 0:12 and
DB ¼ 0:40. Blue symbols show the corresponding excursion set
first crossing distribution obtained by Monte Carlo simulations
of the random walks. Lower panel: relative difference with
respect to Eq. (8). Thin black lines indicate 5% deviations.

FIG. 2 (color online). Distribution of initial overdensities
around randomly chosen halo particles when S ¼ 1, 2, and 3
(black histograms). Blue histograms show the first-crossing
overdensities obtained from the same Monte Carlo simulations
which were used to produce Fig. 1. Smooth blue curves show our
Eq. (6) with parameters calibrated to fit Fig. 1; i.e., it has no free
parameters. Red histograms, which are more sharply peaked,
show the same measurement but around halo centers of mass.
In this case, smooth curves show a lognormal distribution with
the same mean and rms as the measurements.
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Monte Carlo walks whose first crossing distribution is
shown in Fig. 1. The agreement between the two sets of
histograms suggests impressive self-consistency of the
excursion set approach. The numbers in the top half of
Table I give a more quantitative comparison. We can see
that the mean and variance of �1x from the Monte Carlo
walks are remarkably consistent with those from the
N-body simulations. Notice that Eq. (2) slightly overpre-
dicts the mean compared to the Monte Carlo simulations;
this is because Eq. (2) has been derived assuming the same
smoothing for � and B.

Choosing a random particle from each halo, rather than
the one at the center of mass is crucial. The (more sharply
peaked) red histograms in Fig. 2 show the initial overden-
sity associated with center-of-mass particles in the same
halos, i.e., �cm. These values tend to be larger than those for
random particles, and they are almost always greater than
�sc. This is consistent with the analysis in Ref. [7], which
argued that �cm in a halo is larger than for any other particle
in the halo. In addition, the shape is quite non-Gaussian.
The smooth curve shows a lognormal distribution which
has the same mean and variance as the measurements; it
provides a good description, in agreement with Ref. [10].
The bottom half of Table I gives these measured means and
variances. Although they are in good agreement with
Ref. [10], they are larger than those reported by Ref. [38]

which reports that the rms scales as 0:2
ffiffiffi
S

p
. It may be that

our estimates of �cm (like those of Ref. [10]) are broadened
as a consequence of having assumed the initial volume to be
spherical, whereas it is usually not [38].

The statistics of �1x and �cm are different; the latter is
more closely related to the predictions of the ellipsoidal
collapse model of Ref. [7]. For example, setting p ¼ 0 in
Eq. (3) of Ref. [7] yields

�ec

�sc

¼ 1þ 0:47

�
5
e2�2

ec

S

S

�2
sc

�
0:615

(9)

for the critical overdensity associated with the ellipsoidal
collapse model of Ref. [20] (e is a measure of the ellipti-
city of the shear field). This shows that, at fixed S, the
distribution of e�=� determines the distribution of �ec.

Setting p ¼ 0 in Eq. (A3) of Ref. [7] yields 1=
ffiffiffi
5

p
for the

most probable value of e�=�. Therefore, the expression
above suggests ��ecðSÞ � �sc þ 0:41S0:615, which is in
good agreement with the corresponding ��cmðSÞ values
(bottom line of Table I). Similarly, the variance around

the mean of e�=� is 0.14 [38] so the rms of ðe�=�Þ1:23 �
0:17, making the expected variance of �ec � 0:032S. It is
possible that the discrepancy between theory and measure-
ments, which is still of order a factor of 2 or 3 in the
variance, may be reduced if one consider initial ellipsoidal
patches rather than spherical ones.
A key point of our analysis is the distinction between the

distribution of initial overdensities of center-of-mass halo
particles and random ones. This was overlooked in
Ref. [10], which has mistakenly claimed the inconsistency
of the excursion set ansatz.
Here, we have shown that once the statistical assump-

tions underlying the excursion set approach are considered
and despite the differences with respect to the ellipsoidal
collapse model prediction, a simple drifting diffusive bar-
rier can provide a remarkable self-consistent description of
the halo mass function as well as the distribution protohalo
patches in simulations. Therefore, we believe our results
motivate further studies along these lines.
For example, we are not yet able to predict the

(approximately lognormal) statistics of center-of-mass
walks from those of all walks, but see Ref. [26] for a first
step in this direction. Also, because we focus on the
statistics of all walks, and the effective barrier for these,
our approach is complementary to that pursued by
Refs. [33,39,40], which focus instead on developing an
excursion set model for center-of-mass walks. In addition,
there is a small but systematic tendency for the black
histograms in Fig. 2 to peak at larger �1x than the blue as
S decreases. This may be a consequence of our having
forced the barrier to be linear in S, or of using different
filters for � and B, or an artifact of the numerical halo
detection algorithm. We are exploring this further. Such
issues highlight the question of whether the excursion set
approach is merely an effective one or if it provides the
stochastic master equation description of the gravitational
N-body problem. For now, this remains an open question
which we hope to address in the future.
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TABLE I. Mean and variance of the � at first cross.

S ¼ 1 S ¼ 2 S ¼ 3

N-body ��1x ¼ 1:19� 0:008; var ¼ 0:34� 0:007 ��1x ¼ 1:28� 0:004; var ¼ 0:59� 0:005 ��1x ¼ 1:25� 0:020; var ¼ 0:90� 0:02

Monte Carlo ��1x ¼ 1:19� 0:005; var ¼ 0:29� 0:005 ��1x ¼ 1:24� 0:007; var ¼ 0:58� 0:007 ��1x ¼ 1:27� 0:010; var ¼ 0:85� 0:01

Theory ��1x ¼ 1:27; var ¼ 0:29 ��1x ¼ 1:36; var ¼ 0:57 ��1x ¼ 1:44; var ¼ 0:85

N-body ��cm ¼ 2:05� 0:005; var ¼ 0:07� 0:007 ��cm ¼ 2:26� 0:003; var ¼ 0:17� 0:004 ��cm ¼ 2:44� 0:020; var ¼ 0:30� 0:010

Theory ��ec ¼ 2:09; var ¼ 0:03 ��ec ¼ 2:31; var ¼ 0:06 ��ec ¼ 2:49; var ¼ 0:09
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