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We demonstrate that pure N ¼ 4 supergravity is ultraviolet divergent at four loops. The form of the

divergence suggests that it is due to the rigidUð1Þ duality-symmetry anomaly of the theory. This is the first

known example of an ultraviolet divergence in a pure ungauged supergravity theory in four dimensions.

We use the duality between color and kinematics to construct the integrand of the four-loop four-point

amplitude, whose ultraviolet divergence is then extracted by standard integration techniques.
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Recent years have seen enormous advances in our ability
to obtain scattering amplitudes in gauge and gravity theo-
ries. Using these advances we can address basic questions
on the ultraviolet properties of quantum gravity that had
seemed relegated to the dustbin of undecidable questions.
Power-counting arguments suggest that all pointlike theo-
ries of gravity should be ultraviolet divergent. However,
such arguments can be misleading if there are additional
hidden symmetries or structures. In particular, the duality
between color and kinematics [1,2] has been shown to be
responsible for improved ultraviolet behavior in the rela-
tively simple two-loop case of half-maximal supergravity
in five dimensions [3]. This example emphasizes the
importance of carrying out more general investigations of
the ultraviolet properties of supergravity theories to ascer-
tain the full implications of new structures.

Pure Einstein gravity has long been known to be finite at
one loop [4] but divergent at two loops [5]. It also diverges
at one loop under the addition of generic matter [4,6].
However, the situation with pure ungauged supergravity
is less clear. Such theories are known not to diverge prior to
three loops [7]. The consensus from studies in the 1980s
was that all supergravity theories likely diverge at three
loops (see, for example, Ref. [8]), although with appropri-
ate assumptions tighter bounds are possible [9]. However,
it was not possible to check these arguments until the
advent of the unitarity method [10,11]. For the most super-
symmetric case of N ¼ 8 supergravity [12], explicit cal-
culations have shown that the four-point amplitudes are
finite at three loops for dimensions D< 6 [13] and at four
loops for dimensions D< 11=2 [14]. These ultraviolet
cancellations were subsequently shown to be a conse-
quence of supersymmetry and the E7ð7Þ duality symmetry

of the theory [15,16]. However, a D8R4 counterterm
appears to be valid under all standard symmetries, leading
to predictions of a seven-loop divergence in N ¼ 8 su-
pergravity in D ¼ 4.

While seven loops is at present out of reach of direct
computations, reducing the supersymmetry lowers the loop
order at which nontrivial ultraviolet cancellations can be
studied. As discussed in Ref. [16], the same type of sym-
metry argument used for N ¼ 8 supergravity at seven
loops also implies the existence of an apparently valid
three-loop R4 counterterm in N ¼ 4 supergravity [17].
This suggests that pure N ¼ 4 supergravity should di-
verge at three loops. This is consistent with speculations
based on the pattern of cancellations at one loop, suggest-
ing that at least N � 5 supergravity is needed to tame
ultraviolet singularities [18].
However, as recently demonstrated, the coefficient of

the potential three-loop four-point divergence of N ¼ 4
supergravity actually vanishes [19]. (See Ref. [20] for a
string-theory argument.) Another related example is the
unexpected finiteness of the two-loop four-point amplitude
of half-maximal supergravity in five dimensions [3,20]. By
assuming the existence of appropriate 16-supercharge
superspaces, the observed finiteness can be understood as
a consequence of standard symmetries [21]. However,
these superspaces also lead to predictions in direct contra-
diction to explicit calculations when matter multiplets are
added [22], implying that the assumption needs to be
altered. There are also conjectures that certain structures
or hidden symmetries may play a role [23]. In any case,
these examples remain unexplained from standard symme-
try considerations. This makes it important to investigate
the next loop order. If there are no additional cancellations
at four loops beyond the ones already identified at three
loops, either in string theory or in field theory, it should
diverge [20,21].
In this Letter, we compute the four-loop four-point

divergence of N ¼ 4 supergravity following the same
basic methods used in the corresponding three-loop com-
putation [19] and described in some detail in Ref. [22]. We
find that although N ¼ 4 supergravity does have an
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ultraviolet divergence, its form suggests that it is special
and tied to the Uð1Þ duality anomaly of the theory.

Our construction of the four-loop four-point amplitude
of N ¼ 4 supergravity starts with the corresponding pure
Yang-Mills Feynman diagrams in Feynman gauge. To
obtain N ¼ 4 supergravity, we also need the N ¼ 4
super-Yang-Mills diagram kinematic numerators listed in
Ref. [24] that obey the duality between color and kinemat-
ics. In this form the kinematic-numerator factors ni satisfy
algebraic relations in one-to-one correspondence with rela-
tions satisfied by the color factors ci. These factors are
associated with 85 diagrams (plus permutations of external
legs) containing only cubic vertices, as illustrated in Fig. 1.
The N ¼ 4 supergravity integrands are obtained simply
by replacing the color factors ci in the pure-Yang-Mills
integrand with the corresponding N ¼ 4 super-Yang-
Mills kinematic-numerator factors,

ci ! ni: (1)

The construction of the supergravity integrand via the
duality between color and kinematics automatically satis-
fies the D-dimensional unitarity cut constraints, given that
the input gauge-theory amplitudes have the correct cuts.

The N ¼ 4 super-Yang-Mills numerators [24] used in
the construction are proportional to the color-ordered
N ¼ 4 super-Yang-Mills tree-level amplitudes Atree

N¼4,

which can be conveniently expressed in an on-shell super-
space formalism in four dimensions [25]. As an example,
diagram 1 in Fig. 1 has a numerator given by n1 ¼
s4tAtree

N¼4, where s ¼ ðk1 þ k2Þ2 and t ¼ ðk2 þ k3Þ2 are

standard Mandelstam invariants. The remaining numerator
factors are specified in Ref. [24] and are, in general, some-
what more complicated, depending also on loop momenta.

Using Feynman diagrams for the nonsupersymmetric
pure Yang-Mills amplitude might seem inefficient, but
for the problem at hand it is a reasonable choice. It auto-
matically gives us local covariant expressions with no
spurious singularities that could complicate loop integra-
tion. Moreover, only the relatively small subset of dia-
grams containing color factors matching those of the
nonvanishing diagrams in the corresponding N ¼ 4
super-Yang-Mills theory are needed, otherwise the contri-
bution vanishes as well in N ¼ 4 supergravity. Feynman
diagrams also avoid subtleties associated with the bubble-
on-external-leg diagrams, such as diagram 85 of Fig. 1.

After integration all such pure Yang-Mills Feynman dia-
grams are smooth in the on-shell limit, canceling the 1=k2

propagator as k2 ! 0. In N ¼ 4 supergravity such con-
tributions vanish because the color factors in the pure
Yang-Mills diagrams are replaced by vanishing numerator
factors independent of loop momentum [24].
The logarithmic ultraviolet divergence may be extracted

by series expanding in small external momenta, or equiv-
alently large loop momenta [26]. The resulting tensor
integrals are then reduced to scalar integrals via Lorentz
invariance. We regularize the integrals using dimensional
reduction [27]. Further details of the procedure are given in
Ref. [22].
The small-momentum expansion has the undesired ef-

fect of introducing new unphysical infrared singularities.
To separate out all resulting infrared divergences from the
ultraviolet ones, we use a mass regulator. A particularly
convenient choice is to introduce a uniform mass into all
Feynman propagators prior to expanding in external mo-
menta [28]. For the case of pureN ¼ 4 supergravity with
no matter multiplets, with this regulator, the subdivergen-
ces should all cancel amongst themselves because there are
no one-, two- or three-loop divergences. This can be used
to greatly simplify the computation since we do not need to
compute subdivergences. However, we compute them
regardless, using their cancellation as a nontrivial consis-
tency check. More generally, the issue of infrared regulari-
zation is delicate because of regulator dependence. For
example, if the mass regulator were introduced after the
expansion in external momenta, it would ruin the cancel-
lation of subdivergences between different integrals, and
one would need to include all subdivergence subtractions
to remove the regulator dependence.
At the end of this process, we obtain a large number of

vacuum integrals with the two basic diagrammatic struc-
tures shown in Fig. 2. These are of the form

Z Y4
j¼1

dDpj

ð2�ÞD
Pðm2; p1 � p2ÞQ9
i¼1ðp2

i �m2Þai ; (2)

where P is a numerator polynomial in the mass and the
irreducible dot product formed from the momenta flowing
through propagators 1 and 2, indicated in Fig. 2. (By
irreducible we mean that it cannot be expressed as a linear
combination of inverse propagators and masses.) The 9 pi

correspond to the 9 propagators in each of the vacuum
diagrams of Fig. 2, with the first four being independent
loop momenta. The indices ai are integers.

FIG. 1. Four of the 85 diagrams with cubic vertices used to
organize the N ¼ 4 super-Yang-Mills amplitudes into a form
that respects the duality between color and kinematics. The
remaining diagrams are listed in Ref. [24]. FIG. 2. The two basic vacuum graphs.

PRL 111, 231302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

231302-2



The standard modern way to evaluate these vacuum
integrals is to use integration-by-parts relations [29] within
dimensional regularization. This allows us to write down
any given integral as a linear combination of so-called
master integrals which can then be evaluated. For four-
loop Feynman vacuum integrals, this was done in Ref. [30].
In our calculation, the reduction to master integrals turns
out to be complicated because high powers of numerator
loop momenta are involved. To deal with this, we use the
C++ version of the code FIRE [31], implementing the

Laporta algorithm [32]. We use the same master-integral
basis set as in Ref. [33]. (See Ref. [34] for a high-precision
numerical evaluation.)

Each state of pure N ¼ 4 supergravity is a direct
product of a color-stripped state of N ¼ 4 super-Yang-
Mills theory and of pure nonsupersymmetric Yang-Mills
theory. Pure N ¼ 4 supergravity contains two multiplets
that do not mix under linearized supersymmetry: one con-
tains the negative-helicity graviton and the other the
positive-helicity graviton. We find that all amplitudes in
pure N ¼ 4 supergravity are divergent at four loops,

M4�loop

��������div:
¼ 1

ð4�Þ8
1

�

�
�

2

�
10 1

144
ð1� 264�3ÞT ; (3)

where � ¼ ð4�DÞ=2 is the dimensional-regularization
parameter, and

T ¼ stAtree
N¼4ðO1 � 28O2 � 6O3Þ; (4)

where

O 1 ¼
X
S4

ðD�F1��ÞðD�F��
2 ÞF3�	F

�	
4 ;

O2 ¼
X
S4

ðD�F1��ÞðD�F�	
2 ÞF3	�F

��
4 ;

O3 ¼
X
S4

ðD�F1��ÞðD
F
��
2 ÞF3	

�F	

4 :

(5)

The sum runs over all 24 permutations of the external legs.
The linearized field strength for each leg j is given in terms
of polarization vectors for that leg,

F
��
j � iðk�j "�j � k�j "

�
j Þ;

D�F
��
j � �k�j ðk�j "�j � k�j "

�
j Þ:

(6)

We have also included contributions from N ¼ 4 mat-
ter multiplets in the loops. As discussed in Refs. [22,35],
amplitudes with matter multiplets are straightforwardly
obtained via dimensional reduction from higher-
dimensional pure half-maximal supergravity without
matter. After including the contribution of nV matter mul-
tiplets, with all four external states belonging to the two
graviton multiplets, the divergence is

M4-loop
nV

��������div:
¼ 1

ð4�Þ8
�
�

2

�
10 nV þ 2

2304

�
6ðnV þ 2ÞnV

�2

þ ðnV þ 2Þð3nV þ 4Þ � 96ð22� nVÞ�3
�

�
T :

(7)

In this expression nV is independent of �, a restriction that
arises from imposing this on subdivergence subtractions.
The two- and three-loop subdivergences, and subdivergen-
ces thereof, all cancel amongst themselves when we use a
uniform mass regulator, as happened for the nV ¼ 0 case.
These cancellations are analogous to similar cancellations
that occur at three loops and are surprising because there are
subdivergences whenmatter multiplets are included [22,36].
However, the one-loop subdivergences do not cancel when
nV � 0. Instead, these enter nontrivially to make the diver-
gence gauge invariant and proportional to T .
By taking linear combinations,

O��þþ ¼ O1 � 4O2; O�þþþ ¼ O1 � 4O3;

Oþþþþ ¼ O2;
(8)

each of the obtained operators are nonvanishing only for
the indicated helicity configurations and their parity con-
jugates and relabelings. Here the helicity labels refer to
those of the polarization vectors used in Eq. (6) and not the
supergravity states which are obtained by tensoring these
states with those of N ¼ 4 super-Yang-Mills theory.
Using explicit helicity states in D ¼ 4, we have

O��þþ ¼ 4s2t
h12i4

h12ih23ih34ih41i ;

O�þþþ ¼ �12s2t2
½24�2

½12�h23ih34i½41� ;

Oþþþþ ¼ 3stðsþ tÞ ½12�½34�h12ih34i ;

(9)

using spinor-helicity notation. (See Ref. [37] for a recent
review.) The divergence is thus present in all nonvanishing
four-point amplitudes of N ¼ 4 supergravity. Linearized
supersymmetry acts only on the Atree

N¼4 factor in Eq. (4), so

each of these three configurations will not mix under this
symmetry.
The appearance of the divergences in all three indepen-

dent helicity configurations in Eq. (8) is surprising.
In general, the analytic structure of amplitudes in the
��þþ sector is rather different from those of the other
two sectors. This follows from generalized unitarity, where
we decompose the supergravity loops into sums of prod-
ucts of tree amplitudes. In the �þþþ and þþþþ
sectors, all generalized cuts vanish in four dimensions
because at least one tree amplitude will vanish. The same
does not hold in the ��þþ sector. In particular, at one
loop this implies that amplitudes in the ��þþ sector
contain logarithms while amplitudes in the other two
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sectors are pure rational functions. The rational functions
appearing in these sectors have been directly interpreted
[35] as due to the Uð1Þ duality-symmetry anomaly [38].
We can understand the similarity of the four-loop ultravio-
let divergence in all three sectors if we assume that it is due
to the anomaly. As already noted in Ref. [35], unitarity
implies that the anomaly contributes to higher-loop diver-
gences in the ��þþ sector as well (unless canceled
from another source). The similarity of the divergence in
all three sectors would be a consequence of it arising from
the same source. Another helpful clue comes from the fact
that the divergence in Eq. (7) is proportional to nV þ 2. As
explained in Ref. [35], the anomaly terms are proportional
to this factor, providing further nontrivial evidence that the
four-loop divergence is due to the anomaly.

We can reexpress the divergences in terms of counter-
terms involving the Riemann tensor. If we restrict the
external states to four dimensions, numerical analysis
reveals that the four-external-graviton counterterm can be
reduced to a rather simple expression,

C ¼ � 1

ð4�Þ8
�
�

2

�
6 1

72�
ð1� 264�3ÞðT1 þ 2T2Þ; (10)

where

T1 � ðD�R����ÞðD�R�	
��ÞR��

�R
	��;

T2 � ðD�R����ÞðD�R�	
��ÞR��

�R
�	�:

(11)

Using the divergence given in Eq. (3), one can also obtain
the explicit counterterms for any other external states of the
theory.

In any calculation of this type, it is important to have
nontrivial consistency checks on the results. The most
obvious one is the gauge invariance of the results (3) and
(7). This requires intricate cancellations among the terms.
We also find a required cancellation of poles in �, as well as
an expected [29] cancellation of various transcendental
constants. Because there are no lower-loop divergences
in pure N ¼ 4 supergravity, only a 1=� pole can remain
at four loops. As an illustration, consider the basis integral
corresponding to the first integral in Fig. 2, with all propa-
gators having unit indices, except for the ones labeled by 3
and 4 which have vanishing indices (PR9 in the notation of
Ref. [33]). Up to an overall factor, the divergent parts of
this basis integral are

PR9 ¼ 1

4�4
þ 7

3�3
þ 1

�2

�
169

12
� 27

2
S2þ 1

2
�2 þ �3

�
þ 1

�

�
�
143

3
� 135

2
S2� T1epþ 1

6
�2 � 4

3
�3 þ 3

2
�4

�
;

(12)

where S2 and T1ep are transcendental constants specified
in Ref. [33]. Besides finding the required cancellation of all
poles down to the 1=� level in Eq. (3), the transcendental
constants other than �3 also cancel.

Another cross check on our procedure comes from
computing the coefficient of an analogous potential diver-
gence in pure Yang-Mills theory. By renormalizability, the
divergences are proportional to tree-level color tensors, so
all divergences containing independent color tensors other
than the tree-level ones must vanish. Using identical
methods as for the supergravity case, we have confirmed
the ultraviolet finiteness of terms multiplying the two
independent four-loop color tensors listed in Appendix B
of Ref. [39].
Instead of providing definitive answers for the ultravio-

let behavior of supergravity theories, our calculation raises
additional interesting questions. We showed that the non-
vanishing four-loop divergence of N ¼ 4 supergravity
has a form suggesting that it is caused by the Uð1Þ
duality-symmetry anomaly. It would be important to dem-
onstrate this directly either via the counterterm structure or
by tracking the contributions of the anomaly to the ampli-
tudes. One may also wonder whether it is possible to
remove the divergence by adding a finite term to the action
so that an appropriate symmetry is preserved. A key issue
is to find the higher-loop ultraviolet behavior of N � 5
supergravity theories, since these should be free of duality
anomalies and therefore free of potential divergences from
this source. An important step towards this goal would be
to develop improved means for constructing representa-
tions of super-Yang-Mills amplitudes that satisfy the dual-
ity between color and kinematics. Another interesting
problem is that at present there is no complete symmetry
explanation for the cancellation of the four-point ultravio-
let divergences at three loops in four-dimensional N ¼ 4
supergravity or at two loops in five-dimensional half-
maximal supergravity. It would be desirable to investigate
this further. If history is any guide, further surprises await
us as we probe supergravity theories to ever deeper levels.
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