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The saturation of the magnetorotational instability (MRI) in thin Keplerian disks through three-wave

resonant interactions is introduced and discussed. That mechanism is a natural generalization of the

fundamental decay instability discovered five decades ago for infinite, homogeneous, and immovable

plasmas. The decay instability relies on the energy transfer from the MRI to stable slow Alfvén-Coriolis as

well as magnetosonic waves. A second-order forced Duffing amplitude equation for the initially unstable

MRI as well as two first-order equations for the other two waves are derived. The solutions of those

equations exhibit bounded bursty nonlinear oscillations for the MRI as well as unbounded growth for the

linearly stable slow Alfvén-Coriolis and magnetosonic perturbations, thus giving rise to the magneto-

rotational decay instability.
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Introduction.—The magnetorotational instability (MRI)
[1,2] is believed to play an important role in the dynamical
evolution of thin astrophysical disks [3,4]. The analytical
understanding of the processes that are responsible for the
nonlinear evolution of the MRI is therefore crucial for
assessing the true importance of that linear instability to
such phenomena as turbulence generation in the disk and
angular momentum transfer. The first attempts to analyze
the nonlinear evolution of the MRI focused on the dissipa-
tive saturation of the instability [5–7] in environments that
are characteristic of laboratory experiments. Recently,
however, a nondissipative mechanism has been proposed
in the context of a thin-disk geometry, according to which
the MRI saturates to bounded bursty nonlinear oscillations
by nonresonantly driving a zero-frequency magnetosonic
(MS) wave [8,9]. The scope of the nondissipative mecha-
nism of interacting waves is widened in the current work to
include resonant interactions of three linear eigenoscilla-
tions of the system. Thus, extending the weakly nonlinear
analysis entails a surprising result. While the amplitude of
the original MRI saturates via periodical nonlinear oscilla-
tions just as in the nonresonant case, it is shown in the
current work that the amplitudes of the other two linearly
stable modes that participate in the resonant triad may grow
exponentially through the nonlinear magnetorotational
decay instability (MRDI) mechanism. This result provides
a natural generalization of the decay instability mechanism
discovered five decades ago for infinite, homogeneous, and
immovable plasmas [10] to the geometry of thin, rotating,
and axially stratified disks. The resonantly interacting triads
of eigenmodes may serve, therefore, as building blocks of a
turbulence model in thin magnetized disks.

Physical model.—The thin-disk asymptotic expansion
procedure [11–15] is applied to the magnetohydrodynamic
equations in order to study the weakly nonlinear evolution
of the MRI in Keplerian disks that are subject to the action
of an axial magnetic field. A detailed description of that

procedure and its results for the steady state as well as the
linear problem are presented in Ref. [16]. The main results
are summarized as follows. (1) Steady state: Assuming
axially isothermal steady state, the normalized mass den-
sity profiles are given by nðr; �Þ ¼ NðrÞ�ð�Þ, where

�ð�Þ ¼ e��2=2,NðrÞ is an arbitrary function of r, the radial
coordinate, � ¼ �=HðrÞ, � ¼ z=� is the stretched axial
coordinate, and HðrÞ is the semithickness of the disk.
The latter [or alternatively the temperature profile TðrÞ]
is an arbitrary function of r. (2) Linear perturbations:

Modifying the axial mass density profile to ��ð�Þ ¼
sech2� enables the analytical solution of the linearized
set of equations for small perturbations. The resulting
eigenmodes are thus divided into two families. The first
family, the Alfvén-Coriolis (AC) one, represents in-plane
perturbations and includes two sets of axially discrete
modes. The fast AC modes are stable while the slow AC
modes may become unstable. The number of unstable slow
AC modes is determined by the local plasma beta which is
given by �ðrÞ ¼ �0NðrÞC2

sðrÞ=B2
zðrÞ, where �0 is the beta

value at some reference radius and CsðrÞ and BzðrÞ are
some arbitrary profiles of the sound velocity and the axial
steady-state magnetic field, respectively. Thus, the thresh-
old for exciting k unstable modes is given by �k

cr ¼ kðkþ
1Þ=3, k ¼ 1; 2; . . . . It is those unstable slow AC modes that
constitute the MRI. The eigenfunctions of both sets of AC
modes may be expressed in terms of the Legendre poly-
nomials. Of particular importance is the fact that for � ¼
�k

cr the kth eignevalue of the slow AC modes is zero with
multiplicity 2. The other family of eigenoscillations in thin
Keplerian disks includes the vertical MS modes. The latter
are stable, possess a continuous spectrum, and their eigen-
functions are localized about the midplane and may be
expressed in terms of some hypergeometric functions. The
two families of the linear eigenmodes, namely, the AC and
the MS modes, are the building blocks of the nonlinear
analysis to be unfolded in the next sections.
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Resonant interactions.—The scenario that is introduced
in the current work is the following: a large amplitude MRI
forms a triad of resonantly interacting modes with a stable
fast or slow AC mode and a stable MS wave. Such inter-
action is a direct result of the influence of the perturbed in-
plane magnetic pressure gradients on the acoustic modes
and the simultaneous axial convection of the AC modes by
the acoustic perturbations. Such a mechanism underlies the
well-known decay instability in plasmas that was discov-
ered five decades ago [10] and was shown to be of a
fundamental nature. Thus, to illustrate the main idea, fol-
lowing Ref. [17] consider a parent Alfvén wave with
amplitude a1ðtÞ and two daughter waves, one of which is
another Alfvén wave with amplitude a2ðtÞ, while the other
one is a sound wave with amplitude asðtÞ, all coexist in an
infinite uniform, and immovable plasma. A resonant inter-
action between those three modes occurs if the following
resonant conditions are satisfied: !2 ¼ !1 þ!s and
k2 ¼ k1 þ ks. Thus, assuming that the amplitudes vary
on a slower time scale than each of the inverse
eigenfrequencies, the equations that describe the evolution
of the interacting triad may be cast in the following
way [17]:

da1
d�

¼ i�a2a
�
s ; (1)

da2
d�

¼ �i�asa1; (2)

das
d�

¼ i�a�1a2; (3)

where � is a slow time variable. The solution of the above
set under initial conditions that a1 is much bigger than the
other two amplitudes is characterized by cycles of expo-
nential growth of a2 and as and decay of a1, followed by
the saturation and decay of the former and restitution of the
latter. During those portions of the cycles that are marked
by exponential growth of the daughter waves, a2 and as
grow as e��, where � ¼ �a1ð� ¼ 0Þ.

Back to thin rotating disks and the MRI, the physics of
resonantly interacting triads of eigenmodes is in principle
similar to that described above. For simplicity it is assumed
that the � value of the system is just above the first
threshold for instability. Consequently, there is just one
unstable MRI mode, characterized by axial wave number
k ¼ 1. The role of the large amplitude parent mode is
played therefore by the k ¼ 1 MRI, while the daughter
waves are stable k ¼ 2 slow AC and MS modes. Thus,
contributions of the various modes to the perturbations
may be expressed in the following way:

�B?ðz; tÞ ¼ f1ð�; �Þ þ f2ð�; �Þe�i!2t; (4)

��ðz; tÞ ¼ g1ð�; �Þ þ g2ð�; �Þe�i!2t: (5)

Equations (4) and (5) describe the AC and MS modes,
respectively. The first term on the right-hand side of Eq. (4)
represents the parent MRI mode, whose real part of the
frequency is zero (!1 ¼ 0), while the second term
describes the contribution of the k ¼ 2 daughter slow AC
mode that is characterized by the eigenvalue !2. A main
difference from the classical infinite plasma case is the
presence of the first term on the right-hand side of Eq. (5)
that represents the zero-frequency MS perturbations that
are inevitably nonresonantly driven by the parent MRI (see
Ref. [9]). The second term describes the contribution of the
MS eigenmode with frequency !2 so that the resonant
condition on the frequencies is fulfilled due to the continu-
ous nature of the MS spectrum. Time t is normalized with
the local inverse rotation frequency of the disk��1ðrÞ, and
the slow time is defined as � ¼ 	t, where 	 � 1 is the
growth rate of the parent MRI normalized with �ðrÞ.
The amplitudes of the various modes in Eqs. (4) and (5)

may be postulated to be of the following form:

f1ð�; �Þ ¼ a1ð�ÞP1ð�Þ þ a�2ð�Þasð�Þc 2;sð�Þ
þ a31ð�Þc 1;1ð�Þ; (6)

f2ð�; �Þ ¼ a2ð�ÞP2ð�Þ þ a1ð�Þasð�Þc 1;sð�Þ; (7)

g2ð�; �Þ ¼ asð�ÞQ2ð�Þ þ a1ð�Þa2ð�Þc 1;2ð�Þ; (8)

g1ð�; �Þ ¼ a21ð�Þ
1;1ð�Þ: (9)

The first terms on the right-hand side of Eqs. (6)–(8)
represent the three linear modes that participate in the
resonantly interacting triad where Pi, i ¼ 1, 2, are the
eigenfunctions of the MRI and the stable slow AC mode
(both expressed, as mentioned above, in terms of the
Legendre polynomials), while Q2 is the eigenfunction of
the daughter MS mode (expressed in terms of hypergeo-
metric functions). The second terms on the right-hand sides
of Eqs. (6)–(8) describe the nonlinear resonant interactions
through the yet unknown coupling functions c i;jð�Þ, i,
j ¼ 1, 2, s. Equation (9) describes the zero-frequency MS
wave that is nonresonantly forced by the parent MRI, while
the last term on the right-hand side of Eq. (6) describe its
backreaction on the MRI. It should finally be emphasized
that, unlike in the classical decay instability, since the parent
MRI is of zero frequency, a1ð�Þ is assumed to be real. The
other two amplitudes are generally complex valued.
During the linear stage all three modes are independent

of each other so that a1ð�Þ ¼ aþ1 e� þ a�1 e�� (this form of
a1 echoes the multiplicity 2 of the corresponding eigen-
value for 	 ¼ 0), while a2 and as are constants. However,
as a1 grows, the nonlinear terms become progressively
more important and the temporal behavior of the ampli-
tudes changes significantly. It is thus the main goal of the
current work to derive the equations that govern the
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dynamical evolution of the three amplitudes a1ð�Þ, a2ð�Þ,
and asð�Þ.

Guided by the equations of the classical decay instability
[i.e. Eqs. (1)–(3)], the equations for a2ðtÞ and asðtÞ are
postulated to be of the following form:

da2
d�

¼ �i�2asa1; (10)

das
d�

¼ i�sa1a2: (11)

The equation for a1ð�Þ, however, is different from its
classical counterpart. First, a1 is the amplitude of the
MRI mode slightly above the instability threshold where,
as indicated above, the eigenvalue is zero with multiplicity
2. Hence, the equation for a1 is expected to be of second
order [9,18,19]. Furthermore, that equation has to include
the influence of the driven zero-frequency magnetosonic
perturbations. Taking all that into account, and recalling
that a1 is real, the equation for a1 is

d2a1
d�2

¼ a1 þ Ea31 þ �1ða2a�s þ a�2asÞ: (12)

The first term on the right-hand side of the last equation
describes the two linear modes (one exponentially grow-
ing, the MRI, and the other one evanescent) that coalesce
at the threshold to a double zero eigenvalue. The second
term describes the contribution of the driven zero-
frequency MS perturbations, while the last two terms
mark the resonant interaction with the other two modes
of the triad.

The calculation of the four real coupling coefficients in
Eqs. (10)–(12), namely, �1, �2, �s, and E, starts by realiz-
ing that those equations are written by tacitly assuming
some ordering scheme among the various amplitudes.
Thus, recalling that � ¼ 	t, all terms in Eqs. (10)–(12)
are of the same order if the amplitude of the parent MRI is
proportional to 	 while the corresponding amplitudes of

the daughter modes are proportional to 	3=2 and 	3=2.
Equations (10)–(12) are now inserted into the reduced
thin-disk magnetohydrodynamic equations [16], which
are subsequently solved order by order in 	. Not surpris-
ing, the lowest order reproduces the linear results. The next
order yields four nonhomogeneous ordinary differential
equations for the coupling functions c 1;2ð�Þ, c 1;sð�Þ,
c 2;sð�Þ, and c 1;1ð�Þ. The four solvability conditions for

those equations (that provide a generalization of the reso-
nant condition on the wave vectors in the classical case)
result in four values for the coupling coefficients. As
expected, E has the same value as in the nonresonant
case, i.e., E ¼ �27=35 [9]. The discussion concerning
the values of the rest of the three coupling coefficients
and their significance is deferred, however, until after the
derivation of the solutions of Eqs. (10)–(12).

Solution of the dynamical amplitude equations.—
Multiplying Eqs. (10) and (11) by a�s and a�2, respectively,
and summing the resulting equations yields

d

d�
½a2a�s þ a�2as� ¼ 0: (13)

Consequently, Eq. (12) may be written as the following
Duffing equation with a constant forcing term:

d2a1
d�2

¼ a1 þ Ea31 þ �10; (14)

where �10 ¼ �1ða20a�s0 þ a�20as0Þ, and aj0, j ¼ 2, s are the

initial values of the corresponding amplitudes. The value of
�10 varies within a wide range due to the arbitrariness of
the initial data. The equation for a1 may be solved now
separately from those of the other two amplitudes. The
value of �10 determines the number of fixed points for a1,

whether it is one (for j�10j> 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi�27E

p
) or three (for

j�10j< 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi�27E

p
). However, regardless of the value of

�10, the amplitude of the parent MRI, while initially grow-
ing exponentially, saturates and eventually oscillates non-
linearly in a bursty fashion with a constant amplitude, as is
exemplified in Fig. 1. After solving for a1, the dynamical
equations for the daughter modes are easily solved by
defining the following new time variable:

a1
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FIG. 1 (color online). Amplitude of the parent MRI. a1ð0Þ ¼
0:05, da1=d�ð0Þ ¼ 0:5, a2ð0Þ ¼ 1, asð0Þ ¼ 0, �10 ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi�27E
p
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FIG. 2 (color online). �0 as a function of � [see Eqs. (15)–(17)].
Same parameters as in Fig. 1.
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�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2�sj

q Z �

0
a1ð�Þd�: (15)

The nature of the solution of Eqs. (10) and (11) now
depends on � ¼ sgnð�2�sÞ and is given by

a2ð�0Þ ¼ a20 coshð
ffiffiffiffi
�

p
�0Þ þ i�as0
2 sinhð

ffiffiffiffi
�

p
�0Þ; (16)

asð�0Þ ¼ as0 coshð
ffiffiffiffi
�

p
�0Þ þ i�a20
s sinhð

ffiffiffiffi
�

p
�0Þ; (17)

where 
j ¼ �j=
ffiffiffiffiffiffiffiffiffiffiffiffiffij�2�sj

p
, j ¼ 2, s. When the daughter AC

mode is a k ¼ 2 slow wave, � can be shown to be equal to
1. Equations (16) and (17) therefore reveal the following
result: If �2�s > 0, the linearly stable AC and MS modes
that participate in the resonant triad are nonlinearly
destabilized by energy transfer from the linearly unstable
MRI mode, which is consequently saturated. An effective
growth rate of the MRDI of the daughter modes may

thus be estimated as 	nl ¼ jha1ij
ffiffiffiffiffiffiffiffiffiffiffiffiffij�2�sj

p
, where ha1i ¼

lim�!1��1
R
�
0 a1ð�Þd�.

Results.—Figure 1 demonstrates the saturation of the
MRI while Figs. 2 and 3 describe the simultaneous expo-
nential growth of the daughter waves for two different
values of �10. It can easily be seen that the growth rate of
the daughter waves does indeed depend on their initial
conditions through the parameter �10. As the latter grows,
so does jha1ij, and with it 	nl. In addition, as �10 grows, the
steady-state solution for a1 changes its nature from a three
fixed-points solution to a single fixed-point one. This tran-

sition occurs for j�10j ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi�27E

p
.

Conclusions.—The mechanism that is classically known
as the decay instability is revisited and adapted to the
geometry and physics of thin magnetized Keplerian disks.
The resulting MRDI mechanism is conjectured to play an
important role in the nonlinear evolution of the MRI. In the
classical decay instability scenario developed for infinite
homogeneous and immovable plasma, energy is trans-
ferred back and forth between a parent Alfvén wave and
Alfvén and acoustic daughter waves through a three-wave
resonant interaction. The thin-disk version of the decay
instability that has been introduced in the current work is

shown to deviate significantly from its classical predeces-
sor. Instead of the classical stable Alfvén wave, the role of
the parent wave is currently played by a MRI mode that is
slightly above the instability threshold. Hence, its ampli-
tude is governed by a second-order forced Duffing equa-
tion. The daughter waves are invariably AC and MS
modes. In particular, it has been shown that for all possible
initial conditions the parent MRI saturates in a bursty
oscillatory manner. Furthermore, when the AC daughter
wave is a slow AC mode, the linearly stable pair of daugh-
ter waves is nonlinearly destabilized and grows exponen-
tially in time by tapping into the MRI energy. If, however,
the role of the AC daughter wave is played by a stable fast
mode, the amplitudes of all three modes remain bounded as
they exchange energy periodically in a manner that resem-
bles the classical decay instability. The picture of a reso-
nantly interacting triad of modes may be easily generalized
to a cluster of triads for a given parent MRI mode.
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FIG. 3 (color online). �0 as a function of � [see Eqs. (15)–(17)].
a1ð0Þ ¼ 0:05, da1=d�ð0Þ ¼ 0:5, a2ð0Þ ¼ 1, asð0Þ ¼ 0, �10 ¼
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