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Systems with long-range interactions, such as self-gravitating clusters and magnetically confined

plasmas, do not relax to the usual Boltzmann-Gibbs thermodynamic equilibrium, but become trapped

in quasistationary states (QSS) the lifetime of which diverges with the number of particles. The QSS are

characterized by the lack of ergodicity which can result in a symmetry broken QSS starting from a

spherically symmetric particle distribution. We will present a theory which allows us to quantitatively

predict the instability threshold for spontaneous symmetry breaking for a class of d-dimensional

self-gravitating systems.
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Lord Rayleigh was probably the first to make an obser-
vation that long-range forces can lead to symmetry break-
ing [1]. Rayleigh was studying the stability of conducting
spherical fluid droplets carrying charge Q. He discovered
that when Q exceeds a certain critical threshold Qc, drop-
lets become unstable to symmetry breaking perturbations,
elongating and eventually breaking up, emitting jets of
fluid that carry away a significant fraction of the charge
[2]. Rayleigh instability is now the basis for various tech-
nological applications, such as electrospraying and electro-
spinning. It also helps to understand the conformational
structure of charged polymers, such as polyampholytes [3].
For self-gravitating systems a similar instability has been
observed in gravitational simulations [4]. It has been found
that an initially spherically symmetric self-gravitating sys-
tem can become unstable, leading to formation of struc-
tures of reduced symmetry [4]. This radial orbit instability
is believed to be important for the formation of elliptical
galaxies [5].

There is, however, a fundamental difference between the
Rayleigh instability of charged spherical droplets and the
instability of spherically symmetric self-gravitating sys-
tems. Since the droplets are in (canonical) thermodynamic
equilibrium, their shape must correspond to the minimum
of the Helmholtz free energy—in fact, even for Q some-
what below Qc, a spherical shape is already metastable,
with the global minimum corresponding to a strongly
prolate ellipsoid [6]. The thermal fluctuations, however,
are too small to overcome the barrier that separates the
metastable minimum from the global one, so that the
spherical shape persists up to the Rayleigh threshold. On
the other hand, gravitational systems are intrinsically
microcanonical—isolated from environment [7–9]. In the
thermodynamic limit, such long-range systems do not
evolve to thermodynamic equilibrium but become trapped
in quasistationary states (QSS), the lifetime of which

diverges with the number of particles [10]. The QSS are
characterized by the broken ergodicity, making equilib-
rium statistical mechanics inapplicable [11]. To explore
spontaneous symmetry breaking of systems with long-
range forces, therefore, requires a completely different
approach [12]. In this Letter we will present a theory which
allows us to quantitatively predict the thresholds of sym-
metry breaking instabilities for systems with long-range
interactions. The results of the theory will be compared
with extensive molecular dynamics simulations.
To present the theory, we will study a class of self-

gravitating systems of N particles of mass m in an infinite
d-dimensional space. The interaction potential between the
particles is VðrÞ ¼ Gm2=½ð2� dÞrd�2�, where G is the
gravitational constant. We will work in thermodynamic
limit, N ! 1 and m ! 0, while the total mass M � Nm
remains fixed. The initial particle distribution is assumed to
be a uniform spherically symmetric waterbag in both con-
figuration and velocity space,

f0ðr; vÞ ¼ d2

C2
dr

d
mv

d
m

�ðrm � rÞ�ðvm � vÞ; (1)

where � is the Heaviside step function, Cd ¼
2�d=2=�ðd=2Þ is the surface area of a d-dimensional unit
sphere, and �ðxÞ is the gamma function. Since the initial
waterbag distribution is not a stationary solution of the
collisionless Boltzmann (Vlasov) equation, the systems
will evolve with time. We are interested in discovering
under what conditions Eq. (1) becomes unstable to small
nonaxisymmetric perturbations.
It is convenient to define dimensionless variables by

scaling the distance, time, velocities, gravitational poten-

tial, and energy with respect to r0 ¼ rm, t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rdm=GM

p
,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=rd�2

m

p
, c 0 ¼ GM=rd�2

m , and E0 ¼ GM2=rd�2
m ,

respectively. This is equivalent to setting rm¼G¼M¼ 1.
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The particle dynamics is governed by Newton’s equations
of motion

€r ¼ �rc ðr; tÞ; (2)

where the dot stands for the time derivative and r ¼P
ixiêi, i ¼ 1; . . . ; d, is the particle position. In the thermo-

dynamic limit, the correlations between the particles can
be ignored, so that the force acting on a particle located at r
is F ¼ �rc ðr; tÞ, where c ðr; tÞ is the mean gravitational
potential which satisfies the Poisson equation

r2c ¼ Cdnðr; tÞ; (3)

where nðr; tÞ is the particle number density.
We define the ‘‘envelope’’ of the position and velocity

particle distributions to be XiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þhx2i i

q
and

ViðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þhv2

i i
q

, respectively. The h� � �i corresponds
to the average over all the particles. Note that in the
reduced units, Xið0Þ ¼ 1 and Við0Þ ¼ vm for all i, but as
the dynamics evolves, it is possible for the symmetry
between the different directions to become broken. Our
goal is to determine the equations of evolution for XiðtÞ
[13]. Taking two time derivatives of X2

i ðtÞ and one of V2
i ðtÞ

and using the equations of motion, Eq. (2), we obtain

_X2
i þ Xi

€Xi ¼ V2
i � ðdþ 2Þ

�
xi
@c

@xi

�
(4)

and

Vi
_Vi ¼ �ðdþ 2Þ

�
_xi
@c

@xi

�
: (5)

To calculate the averages appearing in Eqs. (4) and (5),
we need to know the mean-gravitational potential. We
suppose that the originally spherically symmetric homoge-
neous distribution can become distorted into an ellipsoidal
shape with the semiaxis fXig and uniform density nðr; tÞ ¼
d=Cd

Q
iXiðtÞ. Using the ellipsoidal coordinate system [14],

the gravitational field inside a d-dimensional ellipsoid with
the semiaxis fXig can be calculated explicitly to be

@c

@xi
¼ d

2
xigiðX1; . . . ; XdÞ; (6)

where

giðX1; . . . ; XdÞ ¼
Z 1

0

ds

ðX2
i þ sÞQd

j¼1ðX2
j þ sÞ1=2 : (7)

Furthermore, for a d-dimensional ellipsoid with a uniform
mass distribution, it can be shown that hx2i i ¼ X2

i =ðdþ 2Þ.
Substituting these results in Eqs. (4) and (5), we obtain a
closed set of coupled equations:

_X2
i þ Xi

€Xi ¼ V2
i �

d

2
X2
i giðX1; . . . ; XdÞ (8)

and

Vi
_Vi ¼ d

2
Xi

_XigiðX1; . . . ; XdÞ: (9)

We define the ‘‘emittance’’ [15] in the ith direction as
�2i ðtÞ� ðdþ2Þ2½hx2i ih _x2i i�hxi _xii2�¼X2

i V
2
i � _X2

i X
2
i . Taking

a time derivative of �2i ðtÞ and using Eqs. (8) and (9), it is
possible to show that the �iðtÞ are the constants of motion,
�iðtÞ ¼ �ið0Þ � �i. Using this observation, the set of
Eqs. (8) and (9) reduces to

€Xi ¼ �2i
X3
i

� d

2
XigiðX1; . . . ; XdÞ: (10)

For the initial waterbag distribution, Eq. (1), �2i ð0Þ ¼ v2
m.

The virial theorem requires that a stationary gravita-
tional system in d dimensions must have 2K¼ð2�dÞU,
where K and U are the total kinetic and potential energies,
respectively. For the initial waterbag distribution,
K ¼ v2

md=½2ðdþ 2Þ� and the potential energy is U ¼
d=½ð2� dÞðdþ 2Þ�, so that the virial condition reduces to
vm ¼ 1. Although the initial waterbag distribution is not a
stationary solution of the collisionless Boltzmann (Vlasov)
equation, we expect that if the virial condition is satisfied,
the system will not exhibit strong envelope oscillations.
This is indeed what has been observed for gravitational
systems in d ¼ 1, 2, and 3 [16–19]. On the other hand, if
the initial distribution does not satisfy the virial condition,
the particle distribution will undergo violent oscillations
which will lead to QSS with a core-halo structure [16,18].
To measure how strongly the initial distribution deviates
from the virial condition, we define a viral number R0 �
ð2K=ðð2� dÞUÞÞ ¼ v2

m. With this definition the emittance
becomes �2i ðtÞ ¼ R0.
Let us first consider a uniform spherically symmetric

mass distribution of radius RðtÞ, i.e., XiðtÞ ¼ RðtÞ for
i ¼ 1; . . . ; d. In this case the integral in Eq. (7) can be
evaluated analytically to yield gi ¼ 2R�d=d, and the equa-
tion of evolution for the radius of the sphere becomes

€R ¼ R0

R3
� 1

Rd�1
; (11)

with Rð0Þ ¼ 1 and _Rð0Þ ¼ 0. We see that, in agreement
with the earlier discussion, if the initial distribution satis-
fies the virial condition, R0 ¼ 1, the sphere’s radius
remains constant for all time, RðtÞ ¼ 1 for any d. For
d � 3, this equilibrium is stable because a small deviation
fromR0 ¼ 1will result in small periodic oscillations of R.
On the other hand, for d � 4 the equilibrium is unstable,
and any R0 � 1 will lead to either collapse or an
unbounded expansion of the particle distribution. These
conclusions are in agreement with the old observation of
Ehrenfest, who first noted that there are no stable orbits for
Newtonian gravity in d � 4 [20].
To investigate the possible symmetry breaking of an

initially spherically symmetric mass distribution, we
need, therefore, to only consider d ¼ 2 and 3. For d ¼ 2,
the integral in Eq. (7) can be performed analytically
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yielding giðX1; X2Þ ¼ 2=XiðX1 þ X2Þ. Equation (10) then
simplifies to

€Xi ¼ �i
X3
i

� 2

X1 þ X2

; i ¼ 1; 2: (12)

The symmetry breaking occurs if an initially vanishingly
small fluctuation grows as a function of time. To study this
instability, it is convenient to introduce new variables,

XiðtÞ ¼ �XðtÞ þ �iðtÞ; (13)

where �X ¼ ðPiXiÞ=d is the average of Xi’s and �i is the
asymmetry along the ith direction. Clearly �i’s are related
by

P
i�i ¼ 0. Hence, for d ¼ 2 there is only one indepen-

dent asymmetry variable � ¼ �1 ¼ ��2. To locate the
region of instability, we perform a linear stability analysis
of Eq. (12). Noting that ð�21 � �22Þ �Oð�Þ, to leading order
in �, Eq. (12) simplifies to

€�þ 3ð�21 þ �22Þ
2 �X4ðtÞ � ¼ ð�21 � �22Þ

2 �X3ðtÞ ; (14)

while the dynamics of �XðtÞ to this order is

€�X ¼ �21 þ �22
2 �X3

� 1
�X
: (15)

The dynamics of � is driven by the oscillations of �XðtÞ. In
particular, if the virial condition is satisfied and �21 ¼ �22 ¼
R0 ¼ 1, the (� ¼ 0, _� ¼ 0) is a stable fixed point of
Eq. (14). Therefore, if R0 � 1, for small initial asymme-
try, �ðtÞ will not grow in time. However, if the initial
distribution does not satisfy the virial condition, �XðtÞ will
oscillate and may drive a parametric resonance which can
make �ðtÞ unstable. This is precisely what is observed in
numerical integration of Eqs. (14) and (15). We find that
for sufficiently small (or large) R0, the amplitude of �ðtÞ
oscillations grows without a bound. Note that in Eq. (14)
the instability occurs as a consequence of a fluctuation
either in the velocity [�ð0Þ ¼ 0 and �1 � �2], the position
[�ð0Þ � 0], or as a combination of both. For sufficiently
small (or large) R0, we find that any small fluctuation in
the initial particle distribution is amplified by the dynam-
ics. Of course, in practice the growth of �ðtÞ will be
saturated by the Landau damping [16,18] and will result
in a QSS with a broken rotational symmetry.

To precisely locate the instability threshold, it is simplest
to consider a small fluctuation with �ð0Þ � 0 and �1 ¼ �2.
Since the�ðtÞ is driven by the periodic oscillations of �XðtÞ,
to study this instability we must work in the Poincaré
section [21,22].

Consider a displacement vector from the (� ¼ 0, _� ¼
0) fixed point, X�ðtÞ ¼ ð��; � _�Þ. From Eq. (14), we see
that its dynamics is governed by _X� ¼ M �X�, where

M ¼ 0 1

� 3R0
�X4 0

 !
; (16)

and the dynamics of �XðtÞ is given by Eq. (15) with �21 ¼
�22 ¼ R0. If we now define a mapping MðtÞ that relates
X�ðtÞ to its initial condition by X�ðtÞ ¼ MðtÞ �X�ð0Þ,
and substitute this into the evolution equation for X�, we
obtain

_M ¼ M �M; with Mð0Þ ¼ I; (17)

where I is the identity matrix. In order to determine the

stability of (� ¼ 0, _� ¼ 0) fixed point, we simultaneously
integrate Eqs. (15) and (17) over one period �R of the
oscillation of �XðtÞ (i.e., between two consecutive points
in the Poincaré map), and determine the eigenvalues of the
mapping matrixMð�RÞ. If the absolute value of any eigen-
value is larger than 1, then (� ¼ 0, _� ¼ 0) fixed point will
be unstable. We find that the asymmetric instability occurs
for R0 < 0:255893 . . . and for R0 > 2:55819 . . . . A more
detailed analysis shows that it is produced by a pitchfork
bifurcation and is of second order. In Fig. 1 we compare the
predictions of the theory with the results of extensive
molecular dynamics simulations performed using the
state-of-the-art gravitational oriented massively parallel
GADGET2 code [23], which has been appropriately modified

to integrate gravity in two dimensions. At t ¼ 0 the parti-
cles are distributed in accordance with Eq. (1). To force the
symmetry breaking to occur along the x axis, a small
perturbation in this direction is introduced. We then moni-
tor the moments hx2i and hy2i as the dynamics evolves.
Figure 1 shows the evolution of the moments for two
different virial numbers. We find that for R0 ¼ 0:16 the
symmetry is broken, while for R0 ¼ 0:36 the spherical
symmetry is unaffected by the initial perturbation. This is in
close agreement with the predictions of the present theory.
A similar symmetry breaking transition is also found for
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FIG. 1 (color online). The evolution of x and y moments of the
mass distribution, hx2i (red solid curve) and hy2i (blue dashed
curve) obtained using molecular dynamics simulations for a 2D
system with N ¼ 8000. A small asymmetry in the x direction is
introduced in the initial particle distribution. For initial distribu-
tion with R0 ¼ 0:36 (a), the system relaxes to a QSS with a
spherical symmetry (see also Fig. 2), while for R0 ¼ 0:16 (b),
spherical symmetry is broken. Similar behavior is found for R0

above the upper critical threshold; see Fig. 2. The inset shows the
evolution of the virial number. Both the symmetric and the
asymmetric QSS are fully virialized, R ¼ 1.
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large virial numbers; see Fig. 2. Since the transitions are
continuous, it is difficult to precisely locate the thresholds
of instability using molecular dynamics simulations.

In Fig. 2 we show snapshots of two QSS to which the
system relaxes after a few oscillations. In agreement with
the theory, depending on the virial number, one of the QSS
is spherically symmetric while the other one is not. For
d ¼ 3 the integral in Eq. (7) cannot be performed in terms
of simple analytical functions, and must be evaluated
numerically. To locate the instability, we once again
make use of the variables defined in Eq. (13) and expand
Eq. (10) to linear order in �i. For d ¼ 3, there are two
independent variables �1 and �2. Numerical integration of
these equations shows, once again, the existence of an
instability for small and large virial numbers. To precisely
locate the instability, we fix �21 ¼ �22 ¼ �23 ¼ R0. To linear

order the dynamics of equations for �1 and �2 then
decouples and becomes identical. This means that we can
study the stability using a single �ðtÞ variable. The matrix
that determines the evolution of the displacement vector

from (� ¼ 0, _� ¼ 0) fixed point now takes the form

M ¼ 0 1
R�15R0

5R4 0

 !
; (18)

where RðtÞ is given by Eq. (11) with d ¼ 3. Substituting
this matrix in Eq. (17) and adopting the procedure analo-
gous to the one used before, we find that the fixed point

(� ¼ 0, _� ¼ 0) becomes unstable for R0 < 0:388666 . . .
and R0 > 1:61133 . . . . Figure 3 shows two snapshots of
the evolution of a 3D gravitational systems. As predicted
by the theory, for both small and large virial numbers the
spherical symmetry of the initial distribution is broken by
the parametric resonances.

For 3D systems finite angular momentum can also lead
to breaking of the spherical symmetry. This, however, is
not the case in 2D. Furthermore, in our simulations the
initial particle distribution has very small angular
momentum—in the thermodynamic limit it will be exactly
zero. The rotation of the system is, therefore, very slow,

while the instability happens very quickly, showing that the
residual angular momentum does not play any role for the
symmetry breaking studied in this Letter.
It is interesting to compare and contrast the Rayleigh

instability of charged conducting droplets and the instability
of self-gravitating systems. While the Rayleigh instability is
a true thermodynamic transition, the gravitational symmetry
breaking is not. When the charge on a droplet exceeds the
critical value Qc, it will undergo a first-order transition to a
prolate ellipsoid. On the other hand, the instability of a self-
gravitating system is a purely dynamical phenomenon, aris-
ing from a parametric resonance that drives an asymmetric
mode of oscillation. The magnitude of the instability is
saturated by the nonlinear Landau damping [24] which leads
to the formation of a nonequilibrium core-halo QSS. If the
instability occurs, the broken ergodicity [11] prevents the
symmetry from being restored. In d ¼ 2, a self-gravitating
systemwith a finite number of particles will eventually relax
to thermodynamic equilibrium in which the distribution
function will have the usual Boltzmann-Gibbs form [18]
and the mean-gravitational potential will once again be
spherically symmetric. The relaxation time to equilibrium,
however, diverges with N, so that in practice a sufficiently
large system (such as an elliptical galaxy) will never evolve
to equilibrium, but will stay in a nonequilibrium stationary
state forever [25]. For such systems, once the instability
occurs, the symmetry will remain irrevocably broken.
This work was partially supported by the CNPq,

FAPERGS, INCT-FCx, and by the U.S.-AFOSR under
Grant No. FA9550-12-1-0438. Numerical simulations
have been performed at the cluster of the SIGAMM
hosted at ‘‘Observatoire de Côte d’Azur,’’ Université de
Nice–Sophia Antipolis.
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while in (b) R0 ¼ 6:25 and the QSS has a broken rotational
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metry remains unbroken, while in (b) R0 ¼ 0:01 there is a
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