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Metadynamics is a commonly used and successful enhanced sampling method. By the introduction of a

history dependent bias which depends on a restricted number of collective variables it can explore

complex free energy surfaces characterized by several metastable states separated by large free energy

barriers. Here we extend its scope by introducing a simple yet powerful method for calculating the rates of

transition between different metastable states. The method does not rely on a previous knowledge of the

transition states or reaction coordinates, as long as collective variables are known that can distinguish

between the various stable minima in free energy space. We demonstrate that our method recovers the

correct escape rates out of these stable states and also preserves the correct sequence of state-to-state

transitions, with minimal extra computational effort needed over ordinary metadynamics. We apply the

formalism to three different problems and in each case find excellent agreement with the results of long

unbiased molecular dynamics runs.
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Molecular dynamics (MD) simulation is a powerful and
much used tool in many scientific fields. In spite of its
many successes, MD is limited in scope by its inability to
describe long time-scale dynamical processes. This can be
a severe limitation since much interesting dynamics takes
place as the system moves from one free energy basin to
another through infrequent rare events which can occur
after waiting times often well exceeding the millisecond
time scale. On the other end, in fully atomistic simulations
the integration time step needs to be of the order of femto-
seconds to correctly integrate the equations of motion. This
makes it impractical in many cases to wait for the relevant
rare events to take place spontaneously and in spite of the
remarkable progress in purpose built computers [1], the
time scale problem still remains a serious issue. While not
much can be done about the integration time step, there has
been progress in developing enhanced sampling methods
that can overcome these bottlenecks following different
strategies [2–14]. While many of these methods have
focused only on reconstructing the static properties, some
have also tried to calculate dynamic properties [5–14].
However, for various reasons the application of these
methods has not been as widespread as one would hope
for and there is a clear need for new and possibly simpler
methods.

Here we shall take metadynamics [2] which is a
successful enhanced sampling method used to calculate
static properties, and show how it can be used to calculate
dynamic properties in a simple way. In metadynamics one
identifies a few collective variables (CVs), and then by
depositing a history dependent biasing potential as a func-
tion of these CVs typically in the form of Gaussians [9], the
system is assisted in escaping free energy minima and
visiting new regions in configuration space that would be

practically inaccessible in unbiased MD. The efficiency of
metadynamics in doing what it was primarily designed to
do, namely recover free energy surfaces (FES) for complex
systems, is by now well established [15]. So far though it
has not been possible to estimate dynamic properties from
these simulations, with the notable exception of Ref. [13]
where a complex postprocessing procedure relying on a
number of assumptions has been suggested.
More precisely, our aim is to obtain the correct sequence

of state-to-state transitions, and to estimate the time the
system spends on average in each metastable state. In
this Letter, we present and validate a powerful yet easy
to use formalism that achieves these objectives while still
maintaining full atomistic resolution. There is no extra
computational effort needed as compared to ordinary meta-
dynamics and in contrast with other methods [10,13] the
postprocessing is minimal. We are inspired by previous
dynamical extensions of accelerated sampling methods
[7,8] based on the addition of a static bias. However, we
show that we are able to avoid some serious limitations of
these approaches. Most notably we do not need to know the
location and nature of transition pathways or any of the
reaction coordinates beforehand. We provide three differ-
ent examples of increasing complexity that establish the
validity of our approach.
An integral part of any metadynamics run is the choice

of a small set of CVs or descriptors {siðRÞg which are
nonlinear functions of the atomic coordinates R. For sim-
plicity in the following we denote the CVs as s. The CVs
are able to distinguish between reactants and products and
help sample different basins, but they are not required to
form a basis for the ensemble of reaction pathways [5].
We suppose for argument’s sake, that there exists a

reaction coordinate �ðRÞ such that for � � �� we are in
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the starting basin and for � > �� in a second basin, and the
hypersurface �ðRÞ ¼ �� defines the dividing surface
which also contains the transition state (TS) or equivalently
the dynamical bottleneck for moving between the two
basins [5,16]. We assume that the time taken to cross this
bottleneck is much less than the time spent in the individ-
ual basins, and that local equilibrium exists at all times. We
can then write the mean transition time � over the barrier
into the other state as

� ¼ 1

!�

Z0

Z�
0

¼ 1

!�

R
���� dRe��UðRÞ

R
�¼�� dRe��UðRÞ : (1)

Here ! is a normalization constant detailed in
Refs. [17,18]. � is a transmission coefficient accounting
for TS recrossing events [5,8,16] whose value does not
concern us, as we show soon for systems of interest in this
Letter where the transition through the bottleneck is fast.
For � ¼ 1, Eq. (1) is equivalent to the result of transition
state theory [16]. But no such assumption is needed here;
neither do we need to calculate � itself which is another
advantage over transition state theory. Z0, Z

�
0 are partition

functions for the system confined to the first basin and to
the hypersurface � ¼ ��, respectively, with averages per-
formed over the Boltzmann ensemble, UðRÞ is the inter-
action potential, and � ¼ ð1=kBTÞ is the inverse of
temperature multiplied by the Boltzmann constant kB.

Let us now assume that we can perform a metadynamics
run in which by accumulating bias against visited states we
gradually enhance the probability of visiting � ¼ ��, but
do not deposit bias over regions near the TS. The bias is
applied as a function of some CVs s which are required to
distinguish between the deep minima of the two basins.
This is a much weaker requirement than on the order
parameter �which should be able to identify the dynamical
bottleneck as well. As we show through our examples later,
it is easier to find such CVs rather than the corresponding
order parameter. The mean transition time �MðtÞ for the
metadynamics run changes as the simulation progresses
and is given by

�MðtÞ ¼ 1

!�M

ZMðtÞ
Z�
MðtÞ

; (2)

where �M, ZM, and Z�
M are analogues of �, Z0, and Z�

0 in

Eq. (1), but are sampled using the time-dependent proba-
bility density of metadynamics [4].

If there is no bias deposited in the TS region around
� ¼ ��, the dynamics of the system near it will be unaf-
fected, implying �M � � and Z�

M � Z�
0. Thus generalizing

to metadynamics the results of Refs. [8,19], we write the
acceleration factor � ¼ ð�=�MÞ as

�ðtÞ � Z0

ZM

¼ he�½VðsðRÞ;tÞ�iM; (3)

where the angular brackets denote an average over a meta-
dynamics run confined to � � ��, and Vðs; tÞ is the

metadynamics time-dependent bias. In the above argument
the crucial assumption is that in Eqs. (1) and (2), only the
denominators depend on the behavior in the TS region.
Also, a precise knowledge of �� is not necessary since the
values of Z0 and ZM are dominated by configurations deep
inside the basin. Thus we expect this approach to work
even in cases where there is an ensemble of transition states
defined via committor analysis [5]. Ultimately, the validity
of Eq. (3) stands on the dynamics being Markovian in
nature [16].
To make practical use of Eq. (3) and recover true time

from metadynamics, we need to avoid depositing bias in
the TS region and, in the lack of a precise knowledge of
this region, have a way of recognizing whether it has been
crossed. The first condition is simply met by increasing the
time lag between two successive Gaussian depositions.
Since in a rare event regime the time the system takes to
cross the TS region is rather short [5], it is most unlikely
that the crossing of the barrier and the Gaussian deposition
occur at the same time and we can rule out this circum-
stance. Whether the Gaussian deposition is infrequent
enough can be ascertained by performing a few simulations
with increasingly slower deposition frequency until the
transition times converge within desired accuracy. Of
course, if we were to continue the run for a very long
time, eventually we would deposit Gaussians in the TS
region and metadynamics would reach its diffusive con-
verged limit in which the FES is fully reconstructed. This is
not our objective here and we are able to obtain converged
rates much before this limit.
To complete the algorithm, we need to recognize

when the system has moved from one basin to another
even if we do not know the corresponding TS precisely. For
this we follow the evolution of the acceleration factor

�ðtÞ ¼ ð1=tÞRt
0 dt

0e�Vðs;t0Þ estimated from the running tem-

poral average over the metadynamics time t. The transition
from one basin to the other is encoded in the time deriva-
tive of �ðtÞ:

d�

dt
¼ 1

t

�
e�Vðs;tÞ � 1

t

Z t

0
dt0e�Vðs;t0Þ

�
; (4)

which exhibits a clear kink whenever the system crosses a
barrier and enters a new state, since the first term in the
bracket changes abruptly while the second one, which is a
running average, changes much more slowly. As we shall
illustrate below with our examples (see Fig. 2(c) and
Supplemental Material [20]), this discontinuous change is
easy to identify and gives us a clear one-dimensional
marker for when the TS is crossed, irrespective of the
number of CVs used. Clearly, we do not know precisely
when the system has crossed the watershed between the
two minima, but as discussed earlier, this induces only a
very small uncertainty since the time lag between deposi-
tions is a few picoseconds as compared to much longer
transition times. We can also monitor if bias has been
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added to the TS region by overlaying the instants of bias
deposition on an acceleration versus metadynamics time
plot. One can then simply discard such a run. However, we
have not yet encountered such a case.

We now proceed with a few illustrative applications of
our approach. The calculations have been performed using
standard simulation tools [21–24] and the computational
details can be found in the Supplemental Material [20].
In the Supplemental Material [20] we also provide graph-
ical evidence that, following our recipe of infrequent
bias deposition, no bias was deposited in the TS regions.
The first example is a two-dimensional potential shown
in Fig. 1(a). This potential has multiple stable states con-
nected through two pathways with different barriers and
jump lengths. The long-time mean squared displacement
and thus the diffusion constant depend on accurately sam-
pling both pathways.While it is easy to sample both at higher
temperatures, at low temperatures the pathway with the
higher barrier is rarely taken. By using metadynamics with
potential energy as CV (the so-called well-tempered en-
semble [25]) we can sample both pathways at all tempera-
tures, and obtain accurate diffusion constants. Figure 1(b)
compares our results with the calculations of Ref. [19] which
come, in part, from direct MD simulation, and for the lower
temperatures from kinetic Monte Carlo calculations. It can

be seen from Fig. 1(a) that potential energy is clearly no-
where near a good reaction coordinate for transitions in this
system, yet the method works since this CV can distinguish
between the various metastable states and well-tempered
metadynamics favors transitions from state to state by
enhancing the energy fluctuations [4,25].
The second example is the C7eq ! C7ax conformational

change of alanine dipeptide in vacuum. These two stable
states can be distinguished by the values of the backbone
dihedral angles (�, �) and are separated by a barrier of
� 8 kcal=mol (see the Supplemental Material [20] for FES
and dihedral angles definitions). Because of the high bar-
rier, this has been a standard test system for many rare
events methods [2,4,25,26]. Here, energy is not able to
distinguish between the minima (the difference in energies
of the minima is only � 2 kcal=mol [4]); thus, we per-
formed well-tempered metadynamics simulations using �
and� as CVs. In Fig. 2(a), the so-obtained frequencies for
C7eq ! C7ax isomerization across various temperatures are

compared to values obtained from long unbiased MD runs,
and the agreement is near perfect. It is well known that a
third dihedral angle � is also part of the reaction coordinate
[6]. We show in Fig. 2(b) that even though we did not
include � as a CV in our simulations, we find a clear ���
anticorrelation in the trajectories that cross over from C7eq

x

y

0 1 2 3
−2

−1

0

1

2

−2

−1

0

1

2

5 6 7 8

−20

−15

−10

1/k
B
T

lo
g 

D

0.200 0.167 0.143 0.125
k

B
T

FIG. 1 (color online). (a) Model potential energy surface from
Ref. [19] showing various stable states. The highest contour is at
V ¼ 2 energy units and contours are separated by 0.25.
(b) Logarithm of the one-dimensional diffusion constant versus
inverse temperature (bottom) and temperature (top). The stars
(blue), circles (red), and asterisks (green) correspond to calcu-
lations for three values of the well-tempered metadynamics
effective temperature [4,25]: 0.75, 0.625, and 0.5, respectively,
while the solid line is for kinetic Monte Carlo calculations
reported in Ref. [19]. 95% confidence intervals are provided.

667 400 250 200
T(K)

2 3 4 5

−10

−5

0

1/T (x 10−3K−1)

lo
g

ν

−20 0 20
−40

−20

0

20

40

Φ
θ

FIG. 2 (color online). (a) Logarithm of one over the average
escape time in ns (log �) from C7eq to C7ax versus inverse

temperature (bottom) and temperature (top). Stars (red) are
from metadynamics, circles (blue) are from long unbiased
MD. Below 300 K, we did not observe transitions in unbiased
MD within constraints of computer power. 95% confidence
intervals are also provided. (b) The ��� anticorrelation in
trajectories as they cross over from C7eq to C7ax, obtained from

metadynamics without using � as a CV. (c) Acceleration
[Eq. (3)] versus metadynamics time at T ¼ 300 K, overlaid on
the system’s trajectory in the � dimension showing distinct
kinks each time a TS is crossed.
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to C7ax. This anticorrelation is an essential feature of the
TS ensemble, as found through detailed transition path
sampling calculations [6]. This once again brings forth a
key feature of our approach. As long as we know CVs that
can demarcate stable states and push the system out of
basins, we do not need to identify other CVs that might be
involved in the TS ensemble. Figure 2(c) shows the accel-
eration as a function of metadynamics time, superimposed
on the � trajectory. A sharp change in slope can be seen
each time a TS is crossed. The overall speed-up of our
calculation with respect to brute force MD is more than
3 orders of magnitude.

As a third example, we consider again alanine dipeptide,
but this time in water at T ¼ 300 K. The FES for this
system has been studied in Ref. [26], and with a barrier
of 2 kcal=mol, it is not exactly a rare event system since the
� $ � isomerization frequency is on the order of
tens per nanosecond, and thus an accelerated sampling
approach is not needed. Thus, we artificially stiffened the
torsion terms in the force field [23] in order to make it a
rare event system but still one in which we could ascertain
the effect of the solvent’s presence. Table I compares the
values obtained through metadynamics (using � and � as
CVs) to those from unbiased MD. The method is again
rather accurate, while providing an acceleration of 3 to 4
orders of magnitude. Kinks similar to those in Figs. 2(c)
were found each time a transition occurred (see Fig. 3 in
the Supplemental Material [20]). This result is very
encouraging since it says that even in the presence of a
fluctuating environment our method is expected to work.

As stressed earlier, expressions similar to Eq. (3) have
already been used in the literature in connection with fixed
bias simulations [7,8,27–29]. In these methods, it is
required a priori to have a sense of the nature of transitions
and locations of various TS, and then construct a time-
independent biasing potential that leaves these TS unper-
turbed. This is feasible if the FES and the relevant reaction
coordinates are known. But in a complex system it is
difficult to obtain all this information and in particular to
identify the exact location and distribution of the TS. This
has restricted the applicability of these methods, especially
to systems where many degrees of freedom are simulta-
neously at play, and the notion of the TS itself has to be
replaced by a whole ensemble of likely transition pathways
(the TS ensemble) [5,6].

We circumvent this difficulty with our simple procedure.
No assumption is made other than the quasistationarity of
metadynamics, a low residence time in TS regions, and the
use of a set of CVs that can help sample correctly the stable
states of the system. The growing metadynamics literature
provides examples of rather generic CVs that have been
successfully applied to a large variety of systems. The
same CVs can now be used to extract rates. Since no bias
has been added to the transition states, the system evolves
with a state-to-state sequence that is preserved from the

unbiased dynamics [19]. If more precise information on
the TS ensemble is needed, a committor analysis [6] can be
performed starting from the reactive paths harvested in our
simulations. The method is designed for systems with rare-
but-fast transitions where the time for crossing dynamical
bottlenecks is small. As such it might not work efficiently
for mesalike barriers where the system spends a long time
in the barrier region itself [11,12]. Nevertheless, our pre-
liminary investigations on a variety of complicated systems
with aptly chosen CVs are very encouraging regarding the
range of applicability of our method. We expect this new
method to be extremely useful for calculating kinetic path-
ways and rates for a variety of complex systems, comple-
menting the already established ability of metadynamics to
calculate free energy surfaces.
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