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We study the equilibrium time correlations for the conserved fields of classical anharmonic chains and

argue that their dynamic correlator can be predicted on the basis of nonlinear fluctuating hydrodynamics.

In fact, our scheme is more general and would also cover other one-dimensional Hamiltonian systems, for

example, classical and quantum fluids. Fluctuating hydrodynamics is a nonlinear system of conservation

laws with noise. For a single mode, it is equivalent to the noisy Burgers equation, for which explicit

solutions are available. Our focus is the case of several modes. No exact solution has been found so far,

and we rely on a one-loop approximation. The resulting mode-coupling equations have a quadratic

memory kernel and describe the time evolving 3� 3 correlator matrix of the locally conserved fields.

Long time asymptotics is computed analytically, and finite time properties are obtained through a

numerical simulation of the mode-coupling equations.
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To predict the dynamic correlator of anharmonic chains
is still a theoretical challenge. In higher dimensions, fluc-
tuating hydrodynamics serves as a convenient starting
point [1–3]. But, as recognized already in the 1970s
[4,5], in one dimension, while the static correlations are
of short range, the dynamic current-current correlations
generically have an anomalously slow decay. In particular,
the transport coefficients, required as an input for fluctuat-
ing hydrodynamics, are divergent formal expressions.
There have been huge efforts, both through theoretical
investigations and numerical simulations, to more pre-
cisely characterize this anomalous behavior (see
Refs. [6–11] for a partial list on Fermi-Pasta-Ulam (FPU)
chains only; a detailed and commented discussion of the
literature can be found in Sec. 7 of Ref. [12]). Here, we
argue that, in one dimension, linear fluctuating hydrody-
namics has to be extended to a nonlinear version, which
will be outlined below. Compared to related contributions
[13,14], our main advance is to treat the full system of
coupled conserved modes and to run time-dependent
numerical simulations of the respective mode-coupling
equations. In our simulations, we use effective coupling
constants, which are computed exactly for the particular
anharmonic chain under consideration. Thereby, time-
resolved predictions are provided which can be tested
against molecular dynamics.

For anharmonic chains, the locally conserved fields are
elongation, momentum, and energy. Fluctuating hydrody-
namics provides a mesoscopic description of the dynamics
of these fields. To illustrate the general framework, it is
instructive to first recall the simpler case of a single con-
served field, here denoted by ~uðx; tÞ, space x 2 R, time t.
On the macroscopic scale, it satisfies the conservation law

@t~uðx; tÞ þ @xjð~uðx; tÞÞ ¼ 0 (1)

with given current function jð~uÞ. We want to study the
fluctuations relative to a uniform background u, i.e.,
~uðx; tÞ ¼ uþ uðx; tÞ and hence expand Eq. (1) to second
order in u and add dissipation plus noise, resulting in the
Langevin equation

@tuþ @xðj0ðuÞuþ 1
2j

00ðuÞu2 �D@xuþ �Þ ¼ 0; (2)

where �ðx; tÞ is space-time white noise of strength �. Since
u models the deviations from uniformity, we consider the
mean zero, space-time stationary process uðx; tÞ governed
by Eq. (2). Then, at fixed time t, the spatial statistics is
white noise huðx; tÞuðx0; tÞi ¼ ��ðx� x0Þ, � ¼ �=2D,
which reflects that the static correlations of an underlying
microscopic model decay exponentially fast. Of particular
interest is the correlator Sðx; tÞ ¼ huðx; tÞuð0; 0Þi, Sðx; 0Þ ¼
��ðxÞ. Its large scale behavior will be dominated by the
nonlinearity, but dissipation and noise are required to
maintain the proper steady state. Equation (2) is the noisy
Burgers equation, equivalent to the spatial derivative of the
one-dimensional Kardar-Parisi-Zhang (KPZ) equation
[15]. There is an exact computation of Sðx; tÞ using replica
[16]. In particular, one knows the universal long time limit

Sðx; tÞ ¼ �ð�BjtjÞ�2=3fKPZðð�BjtjÞ�2=3ðx� j0ðuÞtÞÞ; (3)

valid for large x, t with �B ¼ ffiffiffiffiffiffi
2�

p jj00ðuÞj. Because of
the nonlinearity, the spreading is faster than diffusive.
Note that D, � appear in Eq. (3) only through the static
susceptibility �. Identical scaling properties have also been
derived for stochastic lattice gases [17,18]. The universal
scaling function fKPZ can be written in terms of a Fredholm
determinant and has been computed with great precision
[19]. Interpreting the u field as the slope of a moving front,
Eq. (3) and related predictions have been confirmed for
growth processes in the plane, both in experiments on slow
combustion fronts [20] and on turbulent liquid crystals [21]
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and numerically through Monte Carlo simulations of Eden
cluster growth [22].

To handle anharmonic chains, we have to extend the
above scheme to several components. We use � as a
component index. Then, Eq. (1) generalizes to

@t~u� þ @xj�ð ~~uÞ ¼ 0; � ¼ 1; . . . ; n; (4)

~u ¼ ðu1; . . . ; unÞ. Expanding as ~u� ¼ u� þ u�, the coef-
ficients of the linearized equation are

A��ð ~uÞ ¼ @j�ð ~uÞ
@u�

(5)

and the coefficients of the quadratic part are given by the
Hessians

H�
��ð ~uÞ ¼

@2j�ð ~uÞ
@u�@u�

: (6)

Since the background ~u is already prescribed, we will
suppress it in our notation. For anharmonic chains, the
static correlations of the conserved fields are �-correlated
in space. More generally, rapid decay of static correlations
is assumed, and hence, at fixed t, u�ðx; tÞ is modeled
as white noise with covariance hu�ðx; tÞu�ðx0; tÞi ¼
C���ðx� x0Þ, where C is the n� n susceptibility matrix

with C�� ¼ C��. As discussed in Ref. [23], C and A are

related through

AC ¼ CAT; (7)

with the transpose denoted by T, which implies that A has
real eigenvalues. We use the eigenvectors of A to construct
a linear transformation in component space such that
the �th component of the new field travels with a definite
velocity, say, c�, at the linearized level. The transformed
field components are commonly called normal modes,

denoted here by ~	. Then, ~	 ¼ R ~u with the n� n matrix
R acting in component space only. In addition, we require
that the normal modes are initially statistically uncorre-
lated. Hence, R has to satisfy RAR�1 ¼ diagðc1; . . . ; cnÞ
and RCRT ¼ 1, where both properties together uniquely
determine R up to an overall sign.

We now expand in Eq. (4) to second order in ~u, trans-
form to normal modes, and add dissipation plus noise,
resulting in the statistical field theory

@t	�þ@xðc�	�þh ~	jG� ~	i�@xðD ~	Þ�þ��Þ¼0; (8)

� ¼ 1; . . . ; n, where

G� ¼ Xn
�0¼1

1
2R��0 ðR�1ÞTH�0

R�1: (9)

The diffusion matrix D is positive definite. ��ðx; tÞ is
space-time white noise with strength

h��ðx; tÞ��ðx0; t0Þi ¼ 2D���ðx� x0Þ�ðt� t0Þ: (10)

As before, since ~	 models the deviation from uniformity,

we consider the mean zero, stationary process ~	ðx; tÞ gov-
erned by Eq. (8). In the linear case G� ¼ 0, ~	ðx; tÞ is a
Gaussian process, which for fixed t has white noise statistics
with independent components of unit strength, as imposed
by RCRT ¼ 1. Note that nonlinear fluctuating hydrodynam-
ics requires as microscopic input only the average currents
j�, more precisely, A, H�, and the susceptibility C.
Coupled Langevin equations of the form (8) have been

proposed and studied before in disguise. Introducing the
height h� through @xh� ¼ u�, Eq. (8) turns into the coupled
KPZ equations in one dimension, which describe the dy-
namic roughening of directed lines [24], sedimenting col-
loidal suspensions [25,26], stochastic lattice gases [23,27],
and magnetohydrodynamics [28,29]. The application to
one-dimensional Hamiltonian systems is novel, however.
Equipped with the above frame, let us turn to anhar-

monic chains, for which purpose we first have to figure out
the conserved fields and their macroscopic Euler equations.
The chain consists of N particles, position qj, momentum

pj, j ¼ 1; . . . ; N, unit mass, and is governed by the

Hamiltonian

H ¼ XN
j¼1

ð12p2
j þ Vðqjþ1 � qjÞÞ; (11)

where periodic boundary conditions of the form qNþ1 ¼
q1 þ L are imposed. A prototypical potential is the FPU
choice VðyÞ ¼ 1

2 y
2 þ 1

3ay
3 þ 1

4 y
4. The locally conserved

microscopic fields are elongation rj ¼ qjþ1 � qj, mo-

mentum pj, and energy ej ¼ 1
2p

2
j þ VðrjÞ. Following our

blueprint, we collect them as the three-vector ~g with
g1ðj; tÞ ¼ rjðtÞ, g2ðj; tÞ ¼ pjðtÞ, and g3ðj; tÞ ¼ ejðtÞ. In a

microcanonical simulation, one fixes the elongation per
particle ‘ as L ¼ N‘, the momentum per particle u asP

N
j¼1 pj ¼ Nu, and the energy per particle e as H ¼ Ne.

Computationally, it is convenient to switch to the canoni-
cal pressure ensemble. Then, ‘ is conjugate to the
pressure p and the internal energy e to the inverse
temperature �. In the canonical ensemble, frj; pjg are

independent random variables. The distribution of pj is

a Maxwellian shifted by u, and the distribution of rj is

given by Z�1 exp½��ðVðyÞ þ pyÞ� ¼ h�ip;� with partition

function Z ¼ R
dy exp½��ðVðyÞ þ pyÞ�. Clearly, the

pressure equals the average force acting on a specified
particle. The microcanonical and canonical parameters
are related through

‘ ¼ hyip;�; e ¼ 1

2�
þ hVðyÞip;�: (12)

On the hydrodynamic scale, the average conserved fields
hg�ðj; tÞi are slowly varying and approximated by the
continuum fields ~u�ðx; tÞ, where x stands for the continuum
approximation of the particle index j. From the
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microscopic conservation laws together with local equilib-
rium, one deduces the hydrodynamic currents

j‘ ¼ �u; ju ¼ pð‘; e� 1
2u

2Þ;
je ¼ upð‘; e� 1

2u
2Þ; (13)

which, when inserted into Eq. (4), result in the Euler
hydrodynamics of the anharmonic chain.

Without loss of generality, the equilibrium state of the
chain is taken at u ¼ 0. The linear transformation R, the
velocities c�, and the coupling coefficients G� are com-
puted in terms of at most third order cumulants involving y,
VðyÞwith average h�ip;�. These integrals and the somewhat

unwieldy required substitutions are easily performed using
MATHEMATICA. There are three modes: the heat mode

� ¼ 0, with velocity c0 ¼ 0, and two sound modes
� ¼ �1, with velocity c� ¼ �c, � ¼ �1, where c is the
sound speed

c2 ¼ �@‘pþ p@ep: (14)

The microscopic equilibrium time correlations of the
conserved fields in normal mode representation are defined
by (the # signals normal mode)

S#��ðj; tÞ ¼ hðR ~gÞ�ðj; tÞðR ~gÞ�ð0; 0Þic; (15)

with the index c standing for the second cumulant. Our
central claim is that the normal mode correlations of the
chain are approximated for large x, t as

S#��ðj; tÞ ’ h	�ðx; tÞ	�ð0; 0Þi ¼ S#	��ðx; tÞ: (16)

This leaves us with the task to work out the correlator S#	

for the stochastic field theory (8). With no exact solution at
hand, we rely on the mode-coupling equations in one-loop
approximation. But before, since the three modes travel
with distinct velocities, they decouple for long times and
only the self-interaction proportional to G�

�� will contrib-
ute. Since generically G1

11 � 0, and G1
11 ¼ �G�1�1�1, the

two sound modes are expected to satisfy the KPZ scaling

(3) with the substitutions � ¼ 1, j0ðuÞ ¼ �c and �B ¼
2

ffiffiffi
2

p jG�
��j, � ¼ �1. The decoupling of modes is convinc-

ingly confirmed in a two-component lattice gas [23].
For the heat mode, our argument fails, since G0

00 ¼ 0
always. Note that for the popular case of an even potential,
VðyÞ ¼ Vð�yÞ, at p ¼ 0 and also G1

11 ¼ 0, implying that
all three modes are non-KPZ.

The derivation of the mode-coupling equations is
explained in Ref. [12]. To be concise, we only display
the diagonal approximation, for which S#��ðx; tÞ ’
���f�ðx; tÞ is assumed. Switching to Fourier space and

adopting the standard conventions for discrete Fourier
transforms, the mode-coupling equations then simplify to

@tf̂�ðk; tÞ ¼ �ic� sinð2
kÞf̂�ðk; tÞ � 2½1� cosð2
kÞ�
� ðD�f̂�ðk; tÞ þ

Z t

0
dsM̂��ðk; sÞf̂�ðk; t� sÞÞ;

(17)

� ¼ 1; . . . ; n, with memory kernel

M̂��ðk; tÞ ¼ 2
Xn

�;�¼1

ðG�
��Þ2

Z 1=2

�1=2
dqf̂�ðk� q; tÞf̂�ðq; tÞ:

(18)

Numerically, we always simulate the dynamics of the full
correlator matrix. For a wide range of parameters, after
some transient time, the off-diagonal matrix elements
decay and are always by an order of magnitude smaller
than the diagonal ones.
The special case n ¼ 1 is discussed already in Ref. [30];

see Ref. [31] for a first numerical integration. In Fig. 1, we
display a time sequence for a single mode with G1

11 ¼ 1
2 .

For t * 32, the scaled solution remains stationary. The
asymptotic scaling function differs from fKPZ by a few
percent only. On this basis, we expect that such a precision
extends to several modes.
As a representative example for anharmonic chains, we

choose the FPU potential with a ¼ 2 and u ¼ 0, p ¼ 1,
� ¼ 2, resulting in c ¼ 1:455, which are commonly used
parameters in molecular dynamics simulations. VðyÞ þ py
has a single minimum at y ¼ �1:755. We stress that
simulations can be performed for any choice of the poten-
tial and thermodynamic parameters at minimal numerical
efforts. With the theoretically determined velocities and
couplings, the mode-coupling equations are iterated in
time, using Fourier space representation as in Eq. (17), in

such a way that the values of the memory kernel M̂��0 ðk; sÞ
for s < t can be stored and reused. The time and

FIG. 1 (color online). Time sequence of the numerical mode-
coupling solution n ¼ 1, G1

11 ¼ 1
2 , rescaled by ð ffiffiffi

2
p

tÞ2=3. The
curves are piecewise linear due to the underlying spatial lattice.
The exact KPZ scaling function is shown as a dashed red curve.
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momentum variables are discretized by a uniform grid. In
Fig. 2, the gray vertical lines at �ct indicate the predicted
position of the sound mode peaks. The off-diagonal ele-
ments of S#	 are essentially zero. In the time sequence, we
display the superimposed diagonal normal mode correla-
tions (area 1 under each curve). More details are provided
in the blowup. For the heat mode peak, one observes
oscillations which move away from the center and even-
tually die out. The tail of the heat mode peak is cut at the
location of the sound mode. At the longest available time,
the sound mode peaks are still asymmetric and have not yet
reached their asymptotic shape.

Theoretically, the scaling function for the heat mode
peak is obtained by inserting the known asymptotic form

of f̂�1 in Eq. (18) with � ¼ 0. Solving the then linear
memory equation (17) results in the symmetric Lévy 5=3

distribution f̂0ðk; tÞ ¼ exp½�jkj5=3�0jtj� with computed
nonuniversal coefficient �0. The Fourier transform of

f̂0ðk; tÞ is plotted as a green curve in Fig. 2(d). The Lévy
5=3 distribution for the heat mode peak has been guessed
earlier based on the molecular dynamics of the hard-point
gas with alternating masses [32], reconfirmed in case a
maximal distance between the hard-point particles is
imposed [33], and also for FPU chains [34]. Currently,
the Lévy distribution is the strongest numerical support

of nonlinear fluctuating hydrodynamics. Note that no
signal propagates outside the sound cone.
Based on these and further simulations of the mode-

coupling equations for anharmonic chains, the following
qualitative picture for the motion of the normal mode peaks
in index number space emerges. The sound mode peaks
‘‘rapidly’’ decay to a shape function which is centered at

�ct and varies on the scale t2=3. The shape function itself is
still slowly varying. The couplings G0

�� determine the
scaling of the heat mode peak. Since only the integral
over the square of the shape function is involved, the
heat mode peak rapidly achieves its asymptotic shape in
the range fjxj � ctg with a still slowly varying nonuniver-
sal constant. The intermediate time motion of the sound
mode peaks is dominated by G�

00 and G�����. Assuming

already the validity of overall scaling picture, the size of
these finite time corrections is estimated to be of the order

t�1=15 (respectively, t�1=9) relative to the leading term,
which signals that fKPZ is approached rather slowly. Of
course, only a qualitative guideline is presented. For the
precise dynamics, all velocities and couplings have to be
taken into account.
Conclusions.—We developed a nonlinear extension of

fluctuating hydrodynamics applicable to one-dimensional
systems, in principle, including classical fluids, quantum

FIG. 2 (color online). (a)–(c) Time sequence of normal mode correlations for the FPU chain with a ¼ 2, p ¼ 1, � ¼ 2, and u ¼ 0.
Magnification of (d) the central heat mode peak and (e) the right sound mode peak in suitably rescaled coordinates.
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fluids [35–38], and quantum spin chains. Already at the
level of the one-loop approximation, it is crucial to
maintain the couplings between all conserved modes. As
applied to anharmonic chains, the numerical solutions of
the mode-coupling equations provide a realistic picture of
the correlation dynamics and, on the limited space-time
scale simulated, are consistent with the analytical compu-
tations and also with molecular dynamics, as far as are
available.
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