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Observations of macroscopic quantum coherence in driven systems, e.g. polariton condensates, have

strongly stimulated experimental as well as theoretical efforts during the last decade. We address the

question of whether a driven quantum condensate is a superfluid, allowing for the effects of disorder and

its nonequilibrium nature. We predict that for spatial dimensions d < 4 the superfluid stiffness vanishes

once the condensate exceeds a critical size, and treat in detail the case d ¼ 2. Thus a nonequilibrium

condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid

behavior would persist in small systems.
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Perhaps the most spectacular manifestation of Bose-
Einstein condensation, and its associated macroscopic
quantum coherence, is superfluidity. Recent experiments
[1] have shown macroscopic quantum coherence in a
population of mixed matter-light excitations, so-called
polaritons (see Ref. [2] for a review). Aspects of superfluid
behavior, including quantized vortices [3,4] and sup-
pression of scattering from defects [5], have also been
observed. However, unlike the constituents of conventional
condensates, such as cold atoms, polaritons have a finite
lifetime. Thus, the polariton condensate is a nonequilib-
rium steady state, in which the losses are compensated by
particles flowing in from an external source. This leads to
the interesting possibility of new universal behavior, differ-
ent from that found in equilibrium [6]. Many similarities,
nonetheless, appear to remain, at least in the absence of
disorder: perturbatively, the forms of the correlation func-
tions are the same as in equilibrium [7,8] (long-range order
in three dimensions, and quasi-long-range order in two);
superfluidity is predicted to survive [9] (d � 2); and the
static behavior, in three dimensions, involves the standard
O(2) critical exponents [6]. A new dynamical critical
exponent has, however, recently been discovered [6].

In equilibrium, as predicted in a seminal work [10], the
presence of sufficiently strong disorder may suppress the
superfluid state, and cause a transition to the Bose glass.
Neglecting the gain and loss processes, a similar transition
to a glasslike state was predicted [11] for polaritons. Here
we show, however, that these nonequilibrium processes
play a fundamental role. We consider the experimentally
relevant case of two dimensions, and show that, for a
driven open condensate, static disorder destroys long-range
order. Furthermore, the superfluid stiffness, as probed by
the energy shift induced by twisted boundary conditions
[12], vanishes in the thermodynamic limit. Thus a two-
dimensional driven condensate is not formally a superfluid,
except for zero disorder, although superfluid behavior

would persist below a critical length scale. We identify
this length scale, and the mechanism responsible for
the destruction of superfluidity, below. Our results have
implications both in the search for superfluidity in polar-
iton condensates [3–5,9], and in the emerging study of
nonequilibrium phase transitions in quantum many-body
systems [6–8]. Experiments on polariton condensates may
involve a significant level of static disorder [13], and it is
therefore important to establish how disorder affects a
driven condensate.
A phenomenological description of the macroscopic

wave function �ð ~x; tÞ of a weakly interacting Bose con-
densate with gain and loss is the extended Gross-Pitaevskii
equation (eGPE) [14,15],

i@@t� ¼ ð�Jr2 þ Vð ~xÞ þUj�j2Þ�þ ið�� �j�j2Þ�;

(1)

where J ¼ @
2=2m, V is a random potential, and U > 0 the

interaction strength. The second term on the right introdu-
ces driving and losses, with �=@ the net linear gain, i.e.
the stimulated in-scattering rate minus the loss rate,
and a nonlinearity with gain depletion parameter � (see
Ref. [15]). These terms balance for a condensate density
n0 � �=�. ForV we choose �-correlated Gaussian disorder

hhVð ~xÞii ¼ 0; hhVð ~xÞVð ~yÞii ¼ V2
0�

ðdÞð ~x� ~yÞ;
with strength V0; hh. . .ii denotes the disorder average. It is
convenient to introduce units of length, time, and energy,

namely, the healing length � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=n0U

p
, @=n0U, and the

blueshift n0U, respectively. We define a dimensionless
wave function c � �=

ffiffiffiffiffi
n0

p
, a disorder potential #ð ~xÞ �

Vð ~xÞ=n0U with strength �, and a nonequilibrium control
parameter �, such that � ¼ 0 in equilibrium. These
parameters are

� � V0

�d=2n0U
; � � �

U
: (2)
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In the following we consider steady-state solutions of
Eq. (1). Then, the polariton condensate emits coherent light
of one frequency !, and has a time-independent density
(in contrast to a desynchronized regime [16,17] with several
frequencies). With the ansatz

c ð ~x; tÞ ¼ ffiffiffiffiffiffiffiffiffi
nð ~xÞp

ei�ð ~xÞ�i!t; (3)

we obtain coupled differential equations for the condensate
density n and current nr�,

! ¼ ðr�Þ2 þ 1

4

ðrnÞ2
n2

� 1

2

r2n

n
þ nþ #; (4)

0 ¼ r � ðnr�Þ þ �nðn� 1Þ: (5)

Equation (4) determines the condensate emission frequency
(chemical potential), !, while Eq. (5) is a nonequilibrium
continuity equation, taking into account the coupling of the
driving and losses to condensate currents. Thus, regions
with nð ~xÞ< 1 and nð ~xÞ> 1 act as local sources and sinks,
respectively. Since there is no net current through the
boundary, the first term in Eq. (5) vanishes when integrated
over space, while the second gives the constraint

�n � 1

�

Z
~x
nð ~xÞ ¼ 1

�

Z
~x
nð ~xÞ2; (6)

where � ¼ Ld is the system volume (area).
As pointed out elsewhere [18], the application of the

Landau criterion to a driven condensate gives a vanishing
critical velocity. Nonetheless, for the clean system super-
fluidity has been shown to survive [9], if it is defined by the
irrotational current response at long wavelengths [19]. We
therefore probe superfluidity in the disordered case by
applying a twist of the phase ��ð ~xþ L~e�Þ ���ð ~xÞ ¼ �
between two boundaries of the condensate separated by its
size L in the direction ~e�. This is equivalent to a local

transformation r�� ¼ r�þ ~A� where ~A� � ð�=LÞ ~e� is
the twist current and �ð ~xÞ satisfies periodic boundary
conditions. The superfluid stiffness is then [12,20]

fs ¼ lim
�!0

L2

�2
½!ð�Þ �!ð0Þ�: (7)

In the limit of weak disorder, we perturbatively solve
Eqs. (4) and (5) by expanding the fields n, r�, and the
frequency ! in powers of �: n ¼ 1þ �ð1Þ þOð�2Þ and
r� ¼ r�ð1Þ þOð�2Þ with �ð1Þ, r�ð1Þ �Oð�Þ. All disor-
der contributions for the frequency are of even order in �.
This approach does not, in general, account for vortex
formation [15,21]. To confirm that vortices can indeed be
neglected, we have performed direct numerical simulations
of Eq. (1) starting from initial conditions both with and
without vortices. We find that dynamically stable, well
separated vortex-antivortex pairs do, in some parameter
regimes, occur, but they always significantly increase the
frequency of the condensate. We consider the low-energy
sector, which will be selected by thermalization processes
at low temperature, and focus on solutions without vortices
where the circulation,

H �r� ¼ 0, vanishes around any

closed path. The leading order solution of Eqs. (4) and

(5) with ~A� � 0 in momentum space is

�ð1ÞðkÞ ¼ G�ðk; ~A�Þ#k; (8)

�ð1Þð ~kÞ ¼ G�ðk; ~A�Þ#k; (9)

with

G�ðk; ~A�Þ ¼ �k2	k

k2 þ 2i ~k � ~A�ði ~k � ~A� þ �Þ	k

; (10)

G�ðk; ~A�Þ ¼ �ði ~k � ~A� þ �Þ	k

k2 þ 2i ~k � ~A�ði ~k � ~A� þ �Þ	k

; (11)

and response function 	k � ðk2=2þ 1Þ�1. We point out
that this steady state is a stable fixed point of the dynamical
system, since the excitation spectrum of a driven conden-
sate is diffusive [22–24], i.e., has both real and imaginary
parts. The latter leads to an exponential decay in time for
any excitation. The condensate frequency, up to quadratic
order in �, is

hh!ii � 1þ ~A2
� þ

Z
~k

�
k2
�
jG�j2 � 1

4
jG�j2

�
� jG�j2

�
�2:

(12)

Here the second order density fluctuations hh�ð2Þii were

calculated using Eq. (6). Since the condensate phase is a

massless mode for ~A� ¼ 0, its propagator behaves like
G� � k�2 at long wavelengths, leading to infrared diver-

gences of the momentum integrals which we regularize by
a finite-size cutoff at the wave vector 2
=L. Note that any

nonzero average of the disorder potential, �# � 0, can be
compensated by a shift of the frequency !, see Eq. (4).
Thus we may take #kjk¼0 ¼ 0, implying �ð1ÞðkÞ,
r�ð1ÞðkÞjk¼0 ¼ 0.
In the following we consider d ¼ 2 dimensions and,

first, discuss the ground state properties, ~A� ¼ 0. Using
Eqs. (8) and (10), one finds that the correlation function for
density fluctuations decays exponentially, with the healing
length � as the decay length. Thus, density fluctuations
tend to screen the disorder potential, largely uninfluenced
by the driving mechanism. As discussed in Ref. [25], also
significant is the density Larkin lengthLn � 1=�, at which
the energy cost of density fluctuations balances the energy
gained from collective pinning in the random potential; in
equilibrium, superfluidity occurs for Ln * 1 [25]; see
Eq. (13). A strong effect of the driving appears through
the result for the phase correlation function, Eqs. (9) and
(11). In particular, density fluctuations generate random
sources and sinks, and hence random currents, causing the
phase to fluctuate and destroying long-range order in the
wave function
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hhc �ð ~xÞc ð~0Þii � e�ð1=2Þhh½�ð ~xÞ��ð~0Þ�2ii � expð� ~x2=L2
�Þ:

Here, subleading contributions from density fluctuations
and logarithmic finite-size corrections were neglected. The
phase correlation length is L� � 1=��, defined such that

the typical phase variation over this distance is of order 2
.
This scale can also be obtained by a generalized Imry-Ma
analysis [26]. We integrate Eq. (5) over a region of linear
size L�: the first term becomes the current through the

region’s boundary, of order L�r�� 1, which accounts

for the nonequilibrium current generated according to the

second term, of order ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL�=�Þ2

q
(since �1 � � at scale

�). As was recently also found for the driven Jaynes-
Cummings-Hubbard model [27], driving and potential
disorder combine to act as phase disorder, destroying
long-range order according to an Imry-Ma analysis. In
the next step we calculate the condensate stiffness using
Eq. (7), perturbatively to order �2,

fs � 1� fc1 þ g1ðLÞ�2 þ ðg2ðLÞ þ c2L
2Þ�4g�2; (13)

where we have omitted finite-size corrections vanishing for
L ! 1. The coefficients in this expansion are

c1 ¼ 1

2

; c2 ¼ 1

ð2
Þ3 ;

g1ðLÞ ¼ � 1




�
log

2L2

ð2
Þ2 �
19

12

�
;

g2ðLÞ ¼ � 1




�
log

2L2

ð2
Þ2 �
13

12

�
:

In the equilibrium limit, � ! 0, Eq. (13) reproduces
previous findings [28–30]. As the disorder strength, �,
increases from zero, the stiffness continuously reduces,

before vanishing at the critical strength � ¼ ffiffiffiffiffiffiffi
2


p
. In con-

trast, for a driven condensate, the perturbative result breaks
down in the thermodynamic limit L ! 1, for any nonzero
disorder strength. We observe that the fastest divergence is
controlled by the length scaleLs � 1=�2�, and below this
scale the perturbative result remains finite and physical.
Thus, for systems smaller than Ls we expect superfluid
behavior; however a driven disordered condensate is not a
superfluid in the thermodynamic limit. Generalizing
Eq. (13) to arbitrary dimensions d, we find a suppression
of superfluidity proportional to L4�d and, thus, expect that
superfluidity is destroyed for all d < 4.

To go beyond perturbation theory, we solve the eGPE
numerically on a discrete lattice of spacing aL ¼ �. At
each site, the potential is independently drawn from a
Gaussian distribution of variance �2 by using a Mersenne
Twister generator. Starting from a spatially constant den-
sity and phase we evolve the eGPE until a steady state is
reached. In the parameter range studied the steady state is
stable against perturbing the initial state. For each disorder
realization, we then apply twisted boundary conditions,

� 2 ½�1; 1� and increasing �2 in steps of 0:25, and evolve
the eGPE to find the perturbed steady state. The resulting
frequency response fits to a quadratic function of �, allow-
ing us to extract the stiffness from Eq. (7), and we finally
average over disorder realizations.
Figure 1 shows how the stiffness obtained numerically

compares with Eq. (13), for different system sizes and
nonequilibrium parameters. We see that when the conden-
sate remains stiff, fs & 1, the perturbative result agrees
both qualitatively and quantitatively with simulations.
However, in the regime where the stiffness is strongly
suppressed, the decay of fsð�Þ deviates from the analytical
prediction, even if � 	 1. The suppression of superfluidity
in this strong fluctuation regime is thus not accurately
described by perturbation theory. Nonetheless, the diver-
gent perturbative result suggests a mechanism controlled
by L=Ls which we will confirm in the following by further
numerical investigations.
To this end we have studied two limiting cases. First, if

L 	 Ls the response to the twist is almost homogeneous,

r�� �r� � ~A�, and well described by perturbation the-
ory, cf. the discussion above. Second, if L 
 Ls the phase
response occurs in two domains, with �� �� � 0 and
�� �� � �, separated by a randomly pinned domain wall
of thickness �Ls. This behavior is shown in Fig. 2. The
associated density response (not shown) involves the left
(right) edge of the domain wall forming a source (sink), as
described by Eq. (5). This allows a current response that is
localized inside the domain wall. These results motivate
the ansatz

r�� �r� ¼ �

2�ð1� e�ðL=2�ÞÞ e
�ðjx�x0j=�Þ ~e�; (14)

where x0 denotes the domain wall center, � the domain
wall size, and the amplitude is fixed by the twist angle. We
extract � from simulations by fitting to Eq. (14) in each
disorder realization before averaging. As discussed above,
in perturbation theory Ls is the relevant length scale,
suggesting that � �Ls � 1=�2�. This scaling is

FIG. 1 (color online). Superfluid stiffness as a function of
disorder strength, �2, for nonequilibrium parameters � ¼ 0:1,
0.3, 0.6, 1 from highest to lowest curves, respectively, and system
sizes L ¼ 64 (left panel) and 96 (right panel). Points show
numerical results, and lines the perturbative expression,
Eq. (13). Numerical results are averages over 120 disorder
realizations.
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confirmed by our simulations, as shown in Fig. 3. In the
parameter range used we have observed single domain
walls, only. However, the formation of several walls might
be possible. Nevertheless, the identified mechanism relies
on the localization of the response, which remains present
for several domain walls.

We also propose a scaling ansatz for the stiffness

fs ¼ e�c2�
4�2L2½1� gð�; �; logLÞ�; (15)

to generalize the perturbative result into the regime of
vanishing stiffness. This reproduces Eq. (13) when the
exponential is expanded to first order, and takes into
account that the dominant mechanism suppressing the
stiffness is controlled by L=Ls. The function g in-
cludes logarithmic corrections and the equilibrium
result, and at lowest order in perturbation theory is g ¼
ðc1 þ g1ðLÞ�2 þ g2ðLÞ�4Þ�2, cf. Eq. (13). The simulation
results, shown in Fig. 4, confirm a clear data collapse with
�2�L� L=Ls. The exponential behavior in the regime
c2�

4�2L2 * 1 is in very good agreement with the scaling
form incorporating the perturbative results for c2, as shown

in the inset. Note that to compare with simulations we
calculate the perturbative form retaining the sums over
discrete wave vectors; with this infrared regularization
c2 ¼ 7:734� 10�3.
Finally we propose an experiment, illustrated in Fig. 5,

to measure the superfluid stiffness of the nonequilibrium
polariton condensate. We note that both the emission fre-
quency and phase profile of the condensate can be mea-
sured [1,8] while a phase twist could be imposed by driving
with two coherent beams, resonant with the condensate,
along either edge. In the limit of zero effective tempera-
ture, considered here, phase locking [16,17,31] will pin the
condensate phases at the boundaries to these beams and
hence enforce a phase difference, �, across the condensate.
Measuring the condensate emission frequency for various
twists �, retuning the locking lasers appropriately, could
allow the stiffness to be determined via Eq. (7).
Alternatively, the phase map with the imposed phase twist
��ð ~xÞ, obtainable interferometrically, would show the
characteristic formation of a domain wall, as in Fig. 2,
when compared with the untwisted case.
In conclusion, we have found that the superfluid stiffness

fs of a driven quantum condensate in a random potential
vanishes in the thermodynamic limit for any nonzero dis-
order strength. In a finite system, it decays exponentially

FIG. 3 (color online). Scaling behavior of the decay length �
with � and �. Points are disorder averaged numerical results for
the inverse of �ð�; �Þ normalized to a reference value �0 �
�ð�0; �0Þ. Lines are linear fits on a double log scale. Left:
dependence on � at fixed � ¼ �0 shows ��1 � �2. Right:
dependence on � at fixed � ¼ �0 shows �

�1 � �. The parame-
ters are L ¼ 256aL, �0 ¼ 0:7, �0 ¼ 0:25, � ¼ 1, 72 disorder
realizations.

FIG. 4 (color online). The numerically calculated stiffness as a
function of c2�

4�2L2 � L2=L2
s shows a clear data collapse.

Inset: comparison between the exponential tail and the scaling
form, Eq. (15), using the values of c2 and g obtained perturba-
tively (for details see text). Points are shown for L ¼ 64 and 96;
� ¼ 0:9, 1, and 1.2. For each data point, we simulated up to 1320
disorder realizations.

FIG. 5 (color online). Proposed measurement of condensate
stiffness via the response of the condensate emission frequency
! or phase profile � to a phase twist � (see text).

FIG. 2 (color online). Phase (left) and current (right) response
due to a phase twist � along x, in a typical disorder realization.
The plotted current response is r��ðxÞ � r�ðxÞ averaged along
y. Note the exponentially decaying tails of the current, c.f.
Eq. (14), and the formation of a domain wall in the phase.
Parameters used are � ¼ 0:5, � ¼ 0:5, � ¼ 1.
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with size, fs � e�ðL=LsÞ2 , with the length scale Ls �
1=�2� controlling the decay. As Ls decreases when mov-
ing away from equilibrium or the clean limit, our work
shows that the universal properties of driven condensates
are completely different from those of equilibrium ones, if
there is any static disorder. These predictions could be
tested by measuring the phase profiles and emission fre-
quency of a polariton condensate in the presence of an
imposed phase twist.

We thank A. Amo, S. Richter, R. Schmidt-Grund, and
M. Thunert for stimulating and helpful discussions con-
cerning experiments. A. J. is supported by the Leipzig
School of Natural Sciences BuildMoNa, T. H. by the
Dutch Science Foundation NWO/FOM, and P. R. E. by
Science Foundation Ireland (09/SIRG/I1592).

*Corresponding author.
easthamp@tcd.ie

[1] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P.
Jeambrun, J.M. J. Keeling, F.M. Marchetti, M. H.
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