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The key question of this Letter is whether work can be extracted from a heat engine by using purely

quantum mechanical information. If the answer is yes, what is its mathematical formula? First, by using a

bipartite memory we show that the work extractable from a heat engine is bounded not only by the free

energy change and the sum of the entropy change of an individual memory but also by the change of

quantum mutual information contained inside the memory. We then find that the engine can be driven by

purely quantum information, expressed as the so-called quantum discord, forming a part of the quantum

mutual information. To confirm it, as a physical example we present the Szilard engine containing a

diatomic molecule with a semipermeable wall.
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Maxwell first recognized the subtle role of information
in thermodynamics, and devised his famous demon who
might violate the second law of thermodynamics [1].
Szilard then proposed a simple physical model to realize
Maxwell’s demon, and claimed that information should
play a role of physical entropy unless the second law is
wrong [2]. Now it is widely accepted that the so-called
Szilard engine (SZE) does not violate the second law. The
measurement process or the erasure of the demon’s mem-
ory saves the second law [3–6]. The SZE indeed demon-
strates how information is exploited to extract physical
work, so that it may be called an information heat engine
(IHE). Such an IHE has been realized in experiment [7].
One might ask ‘‘What information is exploited?’’ The
correlation between an engine and a demon’s memory
should be responsible to it since work is extracted from
the feedback control based upon the measurement outcome
obtained by the demon. Note that we use memory with the
same meaning as the demon. More precisely memory
represents the physical realization of a rather vague termi-
nology, the demon.

It has been proposed that the extractable work is given
by the so-called QC mutual information between an engine
and a memory [8]. Here ‘‘QC’’ emphasizes that the local
measurement (thus giving rise to classical information) on
the memory is performed over the quantum composite
system consisting of the engine and the memory. The
information obtained from the memory should be classical
since it is used for feedback control of the engine, which is
classical in nature. In the SZE, a particle can exist either on
the right or on the left side, which is nothing but a one-bit
classical information. The QC mutual information is
bounded by the Shannon entropy of the memory which is
the maximum classical information that the memory can

possess. One might ask whether quantum information can
be used in an IHE. If yes, what is the mathematical
expression of the work from it? Even though the quantum
SZE has been studied [9], only its dynamics is treated
quantum mechanically while the information exploited is
still classical [10].
There have been several works on the IHE using quan-

tum information or entanglement. The entanglement ini-
tially forms between an engine and a bath [11], between an
engine and a memory [12], between a system and an
observer [13], and between an engine A and B when the
engine consists of two parts [14]. The work extracted only
from quantum information (correlation) is expressed as the
discord [15], the deficit [16], or the conditional von
Neumann entropy [13]. However, the initial state of a
heat engine or a system should be in thermal equilibrium,
namely, satisfies the canonical distribution with the well-
defined temperature if the thermodynamic work is
extracted from them. We wonder how quantum entangle-
ment survives when the system contacts with the heat
reservoir so as to be in equilibrium. In Ref. [17] the
quantum correlation is established in atomic internal states,
but the thermodynamic work is simply obtained from the
assumption that the entropy difference between the initial
and the final state rather than derived.
In this Letter we show (i) the quantum mutual informa-

tion of correlated memories of the IHE can be used to
generate work, (ii) the amount of work extracted from
purely quantum mechanical information is expressed as
the discord, and (iii) we present a realizable physical
model, namely, a SZE containing a diatomic molecule
with a semipermeable wall [18]. Our results are general
in that we consider a full quantum composite system con-
sisting of all possible physical components such as an
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engine, a reservoir, and a memory. We emphasize that the
quantum entanglement or correlation exists only in the
memory.

We consider a thermodynamic process of a system S,
e.g., the SZE, which is assumed to have two states or one
bit, e.g., the left and the right side of the SZE, and interacts
with a heat reservoir R at temperature T [9]. A demon M
consists of two one-bit memories, A and B as shown Fig. 1.
It is noted that each memory is indeed not necessarily one
bit in our theory, but only for simplicity here we assume it
has one bit. Even if one-bit memory, namely, only A, is
enough to describe S of two states, we intentionally intro-
duce the second, namely, B to investigate the role of
quantum entanglement in the IHE. Two-bit memories can
be realized by atomic internal states. It is known that
which-way information of the center of mass of a two-
level atom in a matter wave double slit experiment can be
encoded into its internal states [19], which are equivalent to
an one-bit memory. We then regard the two internal states,
namely, A and B, of a heteronuclear diatomic molecule as
two-bit memories. These states are not necessarily in ther-
mal equilibrium so that they can form quantum entangled
states. Note that two atoms with entangled internal states
have been considered in the context of the photon Carnot
engine [20].

The total Hamiltonian is written as

HðtÞ ¼ HSRðtÞ þHint
SMAB

ðtÞ þHMAB
ðtÞ; (1)

where HSRðtÞ, which reads HSRðtÞ¼HSðtÞþHRþHint
SRðtÞ,

describes the system, the reservoir, and their interaction,
respectively. Hint

SMAB
ðtÞ is the interaction Hamiltonian

describing measurement process done by the demon.
HSðtÞ and HMAB

ðtÞ are the Hamiltonian of S and the mem-

ory AB, respectively, which are controlled by varying
external parameters such as an applied magnetic field or
volume of the gas. The thermodynamic process of the total
system is divided into four stages.

Stage 0 (Initial state).—The system S contacts with the
reservoir R at temperature T so that it is in thermodynamic
equilibrium. The density matrix of the initial state of the
total system reads

�ðiÞ ¼ �ðiÞ
AB � �ðiÞ

SR; (2)

with

�ðiÞ
SR ¼ expð��HðiÞ

S Þ
ZðiÞ
S

� expð��HRÞ
ZR

; (3)

where �¼ðkBTÞ�1,HðiÞ
S ¼ HSð0Þ, ZðiÞ

S ¼ trfexpð��HðiÞ
S Þg,

and ZR ¼ trfexpð��HRÞg. Note that there is no restriction

on �ðiÞ
AB.

Stage 1 (Unitary evolution).—Before measurement we
perform a thermodynamic process on the system and the
reservoir with the memory intact. The state is then trans-
formed to

�ð1Þ ¼ Uð1Þ�ðiÞUð1Þy ; (4)

with Uð1Þ ¼ IAB �Uð1Þ
SR. Through this Letter IX denotes the

identity operator for X. In the SZE, inserting a wall corre-
sponds to this stage.
Stage 2 (POVM).—The measurement of S is done by

using positive operator valued measures (POVMs) [21]. In
order to study the role of the quantum correlation of the
IHE, the measurement is performed only by A with the
rank-1 projector �k

A for obtaining each outcome k with
the probability pk, instead of the whole AB. The density
matrix after the measurement is given as

�ð2Þ ¼ X

k

�k
A�

ð1Þ0�k
A ¼ X

k

pkjkiAhkj � �ð2Þk
BSR; (5)

where �ð1Þ0 ¼ Uð2Þ�ð1ÞUð2Þy with Uð2Þ, a unitary operator

generating the correlation between S and A, pk ¼
tr½�k

A�
ð1Þ0�k

A�, and �ð2Þk
BSR ¼ trA½�k

A�
ð1Þ0�k

A=pk�.
If the measurement is performed by the whole AB,

namely M, one instead obtains

�ð2Þ ¼ X

k

�k
M�

ð1Þ0�k
M ¼ X

k

qkjkiMhkj � �ð2Þk
SR ; (6)

where �ð1Þ0 ¼ Vð2Þ�ð1ÞVð2Þy with Vð2Þ, a unitary operator

generating correlation between S and M, qk ¼
tr½�k

M�
ð1Þ0�k

M�, and �ð2Þk
SR ¼ trM½�k

M�
ð1Þ0�k

M=qk�. As

mentioned earlier, it has been shown that the work bound
of this IHE is given by the QC mutual information between
S and M, namely, Wext � ��FS þ kBTIQCðS:XÞ [8],

where FS and X denote the Helmholtz free energy of S
and the set of outcomes of k, respectively. Here, IQCðS:XÞ
is defined as Sð�ðiÞ

S Þ �P
kqkSð�ð2Þk

S Þ, where �ðiÞ
S ¼ trR½�ðiÞ

SR�
and �ð2Þk

S ¼ trR½�ð2Þk
SR �.

Stage 3 (Feedback control).—Formally the feedback
control can be described by a unitary transform of the total

system, namely, Uð3Þ ¼ IB �P
kjkiAhkj �Uk

SR. The final

state at t ¼ tf reads

�ðfÞ ¼ Uð3Þ�ð2ÞUð3Þy : (7)

FIG. 1 (color online). The schematic picture showing the setup
considered here. The system is attached to the reservoir, and is
measured and controlled by the memory consisting of A and B.
(See the text for the details.)
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It is noted that the final state is not necessarily the canoni-
cal distribution [8], but this makes no problem below [see
Eq. (11)].

Now let us find the entropy change of SR during the
above mentioned thermodynamic process. Note that
Sð�Þ ¼ �trð� ln�Þ represents the von Neumann entropy
and HðpkÞ ¼ �P

kpk lnpk the Shanon information. Since
the measurement performed in the stage 2 increases the

entropy, i.e., S½�ðiÞ� � S½�ð2Þ�, one obtains
S½�ðiÞ

SR� þ S½�ðiÞ
AB� � HðpkÞ þ

X

k

pkS½�ð2Þk
BSR�: (8)

Because of the subadditivity of von Neumann entropy,
Eq. (8) is rewritten as

S½�ðiÞ
SR� �

X

k

pkS½�ð2Þk
SR � �HðpkÞ þ

X

k

pkS½�ð2Þk
B � � S½�ðiÞ

AB�:

(9)

Considering the concavity of the Neumann entropy, we
obtain after some algebra

S½�ðiÞ
SR� � S½�ðfÞ

SR� � �SA þ �SB ��I; (10)

where �SX ¼ S½�ðfÞ
X � � S½�ðiÞ

X � with X 2 fA; Bg and

�I ¼ IðAð2Þ:Bð2ÞÞ � IðAðiÞ:BðiÞÞ. Here I denotes the
quantum mutual information, IðA:BÞ¼IðB:AÞ¼Sð�AÞþ
Sð�BÞ�Sð�ABÞ.

Next, let us find the bound of the work extractable from
this IHE. By using Klein’s inequality and Eq. (10) one
obtains

S½�ðiÞ
SR� � tr½�ðfÞ

SR ln�
ðfÞcan
SR � � �S� �I; (11)

with �S � �SA þ �SB, and

�ðfÞcan
SR ¼ expð��HðfÞ

S Þ
ZðfÞ
S

� expð��HRÞ
ZR

; (12)

where ZðfÞ
S ¼ trfexpð��HðfÞ

S Þg with HðfÞ
S ¼ HSðtfÞ. By

inserting �ðiÞ
SR of Eq. (3), �ðfÞ

SR, and �ðfÞcan
SR of Eq. (12) into

Eq. (11) we obtain

EðiÞ
S � EðfÞ

S þ EðiÞ
R � EðfÞ

R � FðiÞ
S � FðfÞ

S þ kBT½�S��I�
(13)

with EðiÞ
S ¼ tr½�ðiÞHðiÞ

S �, EðfÞ
S ¼ tr½�ðfÞHðfÞ

S �, EðiÞ
R ¼

tr½�ðiÞHðiÞ
R �, EðfÞ

R ¼ tr½�ðfÞHðfÞ
R �, FðiÞ

S ¼�kBT lnZ
ðiÞ
S , and

FðfÞ
S ¼ �kBT lnZðfÞcan

S .

Because the work extractable from the engine is defined

as Wext ¼ ��US þQ, where �US ¼ EðfÞ
S � EðiÞ

S is the

change of the internal energy and Q ¼ Ei
R � Ef

R the heat
exchange between S and R, we finally reach

Wext � ��FS þ kBT�S� kBT�I; (14)

with �FS ¼ FðfÞ
S � FðiÞ

S . Here, �FS and �S describe the

free energy difference and the entropy change of each
memory, respectively, so that they play the role of thermo-
dynamic entropy of a usual IHE consisting of the memory
with no correlation. �I represents the change of the quan-
tum mutual information or the total correlation between
the memory A and B. Note that the increase of the entropy
of each memory but the decrease of the correlation are
exploited to generate work, which is reflected in the differ-
ent signs of them in Eq. (14).
The correlation ~J between A and B formally satisfies

~JðB:AÞ ¼ SðBÞ � SðBjAÞ, where SðBjAÞ represents the
conditional entropy. In quantum mechanics the conditional
entropy can be well defined only if the projectors of the
measurement on A, f�i

Ag, are given. Therefore, it should be
written as ~JðB:AÞ ¼ Sð�BÞ � Sð�Bjf�i

AgÞ, which obvi-
ously depends on f�i

Ag. Interestingly, IðB:AÞ � ~JðB:AÞ
does not vanish. We can thus define the quantum discord
as �ðBjAÞ ¼ min½IðB:AÞ � ~JðB:AÞ� [15], which also reads

�ðBjAÞ ¼ Sð�AÞ � Sð�ABÞ þmin
X

i

piSð�i
BÞ (15)

with pk ¼ trf�k
A�AB�

k
Ag, and �k

B ¼ �k
A�AB�

k
A=pk. Here

the minimization is performed over the sets of the projec-
tors f�k

Ag. This measures the quantum mechanical contri-
bution of the correlation between A and B. Thus, the
quantum mutual information is reexpressed as IðA:BÞ ¼
JðB:AÞ þ �ðBjAÞ with JðB:AÞ ¼ max½~JðB:AÞ� ¼ Sð�BÞ�
min

P
kpkSð�k

BÞ.
Since �ð2Þ

AB is the postmeasurement density matrix,

one finds IðAð2Þ:Bð2ÞÞ ¼ JðAð2Þ:Bð2ÞÞ, implying �ð2Þ
AB has no

quantum mechanical correlation in the context of the

quantum discord. It means that ��ðBjAÞ¼�ðBðfÞjAðfÞÞ�
�ðBðiÞjAðiÞÞ¼��ðBðiÞjAðiÞÞ, due to �ðBðfÞjAðfÞÞ ¼ 0. Thus,
Eq. (14) is rewritten as

Wext���FSþkBT�S�kBT�JþkBT�ðBðiÞjAðiÞÞ; (16)

where the change of the mutual information �I is split into
that of the classical correlation �J and the purely quantum

correlation of the initial state of the memory �ðBðiÞjAðiÞÞ.
Equation (16) is the most important result of our work.
If we ignore the well-known contribution of both �FS and
�S, the bound of the work extractable is given by two
correlations. Even if no classical correlation changes, i.e.,
�J ¼ 0, we still find a source of the work given as the
discord. This answers the question raised in the beginning;
One can extract work from an IHE by using purely quantum
mechanical information contained in the initial state of the
memory, which is expressed as the discord. It is noted that
the quantum discord has already been found in some liter-
atures in the similar context [12,16]. The discord easily
appears oncewe look for the entropy change of the quantum
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correlated bipartite system after measuring only one sub-
system irrespective of the detailed physical situation.

Note that Eq. (16) does not contain the QC mutual
information, which differs from the result of Ref. [8].
The reason is that we exploit rather a loose inequality (8)
to derive Eq. (14). It allows us to find more clear expression
for the work extracted from purely quantum mechanical
information. Note also that the discord is not a unique
measure quantifying the purely quantum mechanical cor-
relation; see, e.g., [22]. However, we do not know how to
realize the IHE using the quantum correlation of Ref. [22].

Now we show an example of the IHE driven solely by
quantum correlation. Let us consider the SZE containing a
molecule consisting of two distinct atoms. (See Ref. [9] for
how thermodynamic processes of the SZE evolves.) Each
atom has two fully degenerate internal states designated by
A and B, which are physically equivalent to two 1=2 spins.
This combined spin system AB plays a role of the memory
M. We prepare the initial state of AB as the maximally

entangled state, namely, �ðiÞ
AB ¼ j�þih�þj, with j�þi ¼

1=
ffiffiffi
2

p ðj"A"Bi þ j#A#BiÞ. We insert a wall in the middle of the
container to separate it into two parts, which completes the

stage 1. The SZE is then described by �ðiÞ
S ¼ 1=2jLi�

hLj þ 1=2jRihRj, where jLi and jRi denote the state that
the molecule is found in the left and the right side, respec-
tively. We regard this the initial state, which is written as

�ðiÞ ¼ j�þih�þj � 1=2ðjLihLj þ jRihRjÞ � �can
R : (17)

Next, after detaching the reservoir we apply the unitary
operator described by 1=2ðjLihLj �UL þ jRihRj �URÞ
withULj�þi ¼ j"A"Bi andURj�þi ¼ j#A#Bi to �ðiÞ, which
generates the coupling between S and M. In addition, we
perform projection operation onto A, which completes the
stage 2 of POVM with �k

A ¼ fj"iAh"j; j#iAh#jg. We then
obtain

�ð2Þ ¼ 1=2ðj""ih""j � jLihLj þ j##ih##j � jRihRjÞ; (18)

which implies that the internal state A of the molecule in
the left and right side is j"i and j#i, respectively.

We introduce the most important ingredient of this IHE,
a semipermeable wall (SPW) [17,18] denoted as Wj"iðj#iÞ
which prohibits the molecule from passing through it if A’s
internal state is j"iðj#iÞ, but becomes transparent if it is
j"iðj#iÞ. In some sense the SPW is similar to a polarizer in
optics. Note that the SPW sees only A. The SPW’sWj#i and
Wj"i are inserted and the wall is removed as shown in Fig. 2,

where the width of all the walls are negligibly small. Now
we reattach the reservoir to the engine S and assume that
the SPW’s are movable. Because of the nature of the
SPW’s, Wj#i and Wj"i move to the left and to the right,

respectively, from which the work of kBT ln2 can be
extracted via isothermal expansion. This completes the
stage 3, a feedback control. The final state is then given as

�ðfÞ ¼ 1=4ðj""ih""j þ j##ih##jÞ � ðjLihLj þ jRihRjÞ � �can
R :

(19)

Note that it is guaranteed that the final state of the reservoir
satisfies the canonical distribution since the unitary evolu-
tion of the total system can describe any thermodynamic
processes [23].
Where does the work come from? One can easily see

�FS ¼ 0 according to �ðiÞ
S ¼ �ðfÞ

S . It is also found that

�ðiÞ
X ¼�ðfÞ

X due to trX½�ðiÞ
AB�¼ trX½�ðfÞ

AB�¼1=2ðj"ih"jþj#ih#jÞ
with X 2 fA; Bg, implies �SA ¼ �SB ¼ 0. �J ¼ 0 is

guaranteed from the fact that �ðfÞ
AB is the postmeasurement

state of �ðiÞ
AB on A. As far as Eq. (14) is concerned, to avoid

violating the second law the work should be originated
from the quantum discord. This is confirmed by obtaining

�ðBðiÞjAðiÞÞ ¼ ln2 from Eq. (15).
The main physics of this engine is summarized as fol-

lows. When we focus on the memory during the process,

the initial Bell state j�þih�þj with j�þi ¼ 1=
ffiffiffi
2

p ðj""i þ
j##iÞ is finally transformed to 1=2ðj""ih""j þ j##ih##jÞ. Here
the classical correlation, implying if A is " then B should be
" and vice versa, survives but their quantum superposition,
more precisely the entanglement, is broken. The quantum-
ness of this correlation quantified by the discord has been
used so as to generate the work.
One might ask why we obtain only kBT ln2 instead

of 2kBT ln2 with the memory of two bits. The reason is
that we have exploited only quantum correlation, the dis-

cord. The final state �ðfÞ still contains the classical corre-
lation, which can also be used for extracting work by

transforming �ðfÞ to the fully mixed state, 1=4ðj""ih""jþ
j"#ih"#j þ j#"ih#"j þ j##ih##jÞ. We thus extract additional
kBT ln2 due to �J ¼ ln2.

FIG. 2 (color online). The SZE containing a molecule with two
internal states A and B prepared in the Bell’s state. (a) A wall,
depicted as a vertical gray bar, is inserted to split the box into
two parts. The molecule is represented by the dotted circles so as
to indicate that at this stage we do not know in which box the
molecule is. (b) By applying the unitary operator we have the
state given by Eq. (18). The SPWs are then inserted so thatWj#i is
in the left andWj"i in the right of the wall, and, consequently, the
wall is removed. (c) A load is attached to each SPW to extract
work via an isothermal expansion at a constant temperature T.
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A final remark is in order. The work originated from
quantum information is not free. The engine considered
here is not cyclic in that the memory does not return to the
initial Bell state. To recover the initial state one should pay
the work equivalent to that obtained during the process,

i.e., kBT ln2, due to Sð�ðfÞÞ � Sð�ðiÞÞ ¼ ln2.
In summary, we have investigated the bound of the

extractable work from the IHE when the correlated mem-
ories are taken into account. In addition to the Helmholtz
free energy difference and the entropy change of individual
memory, the bound contains the quantum mutual informa-
tion consisting of two parts, the classical correlation and
the quantum discord. The quantum discord quantifies the
purely quantum mechanical correlation implying that the
work can be extracted from purely quantum mechanical
information. We confirm it by showing a physical example,
a SZE containing a heteronuclear molecule with two
atomic internal states initially entangled, where SPW’s
play a crucial role.
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