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Uncertainty relations are a distinctive characteristic of quantum theory that impose intrinsic limitations

on the precision with which physical properties can be simultaneously determined. The modern work on

uncertainty relations employs entropic measures to quantify the lack of knowledge associated with

measuring noncommuting observables. However, there is no fundamental reason for using entropies as

quantifiers; any functional relation that characterizes the uncertainty of the measurement outcomes defines

an uncertainty relation. Starting from a very reasonable assumption of invariance under mere relabeling of

the measurement outcomes, we show that Schur-concave functions are the most general uncertainty

quantifiers. We then discover a fine-grained uncertainty relation that is given in terms of the majorization

order between two probability vectors, significantly extending a majorization-based uncertainty relation

first introduced in M. H. Partovi, Phys. Rev. A 84, 052117 (2011). Such a vector-type uncertainty relation

generates an infinite family of distinct scalar uncertainty relations via the application of arbitrary

uncertainty quantifiers. Our relation is therefore universal and captures the essence of uncertainty in

quantum theory.
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Uncertainty relations lie at the core of quantum mechan-
ics and are a direct manifestation of the noncommutative
structure of the theory. In contrast to classical physics,
where in principle any observable can be measured with
arbitrary precision, quantum mechanics introduces severe
restrictions on the allowed measurement results of two or
more noncommuting observables. Uncertainty relations
are not a manifestation of the experimentalists’ (in)ability
of performing precise measurements, but are inherently
determined by the incompatibility of the measured
observables.

The first formulation of the uncertainty principle was
provided by Heisenberg [1], who noted that more knowl-
edge about the position of a single quantum particle
implies less certainty about its momentum and vice versa.
He expressed the principle in terms of standard deviations
of the momentum and position operators

�X ��P � @

2
: (1)

Robertson [2] generalized Heisenberg’s uncertainty
principle to any two arbitrary observables A and B as

�A ��B � 1

2
jhc j½A; B�jc ij: (2)

A major drawback of Robertson’s uncertainty principle
is that it depends on the state jc i of the system.
In particular, when jc i belongs to the null-space of
the commutator [A, B], the right upper bound becomes

trivially zero. Deutsch [3] addressed this problem by pro-
viding an entropic uncertainty relation in terms of the
Shannon entropies of any two nondegenerate observables,
later improved by Maassen and Uffink [4] to

HðAÞ þHðBÞ � �2 logcðA; BÞ: (3)

Here, HðAÞ is the Shannon entropy [5] of the probability
distribution induced by measuring the state jc i of the
system in the eigenbasis fjajig of the oservable A (and

similarly for B). The bound on the right-hand side
cðA; BÞ :¼ maxm;njhamjbnij represents the maximum

overlap between the bases elements, and is independent
of the state jc i.
Recently, the study of uncertainty relations intensified

[6,7] (see also [8,9] for recent surveys), and as a result
various important applications have been discovered,
ranging from security proofs for quantum cryptography
[10–12], information locking [12], nonlocality [13], and
the separability problem [14]. There were also recent
attempts to generalize uncertainty relations to more than
two observables. For this case relatively little is known
[15–19], as the authors investigated only particular instan-
ces of the problem such as mutually unbiased bases.
In most of the recent work on uncertainty relations,

entropy functions like the Shannon and Renyi entropies
are used to quantify uncertainty. However, in the context of
the uncertainty principle, these entropies are by no reason
the most adequate to use. Indeed, as we show here, other
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functions can be more suitable in providing a quantitative
description for the uncertainty principle.

Our approach is based on using majorization [20] to
quantify uncertainty. The idea of using majorization to
study uncertainty relations was first introduced in [21],
and here we build on these ideas and provide explicit
closed formulas.

Uncertainty is related to the ‘‘spread’’ of a probability
distribution, or, equivalently, to the ability of learning that
probability distribution. Intuitively a less spread distribu-
tion is more certain than a more widely spread. For
example, in a d-dimensional sample space, the probability
distribution p ¼ ð1; 0; . . . ; 0Þ is the most certain, whereas
the distribution q ¼ ð1=d; 1=d; . . . ; 1=dÞ is the most uncer-
tain. What are then the minimum requirements that a good
measure of uncertainty has to satisfy?

In his seminal paper [3] on entropic uncertainty
relations, Deutsch pointed out that the standard deviation
� can be increased by mere relabelling of the random
variables associated with the measurements. He therefore
concluded that the relation in (1) can not be used as a
quantitative description of the uncertainty principle.

Following Deutsch observation, we assume here that the
uncertainty about a random variable cannot decrease under
a relabelling of its alphabet; i.e., the uncertainty associated
with a probability vector p cannot be larger than the
uncertainty associated with a relabelled version of it, �p,
where � is some permutation matrix. In fact, both
uncertainties are the same as permutations acting on a
probability space are reversible. Next, we make the rea-
sonable assumption that uncertainty cannot decrease by
forgetting information (discarding); see Fig. 1. We call
this very reasonable presumption monotonicity under ran-
dom relabeling. This will be our only requirement for a
measure of uncertainty. We therefore conclude that any
reasonable measure of uncertainty is a function only of the
probability vector, is invariant under permutations of its

elements, and must be nondecreasing under a random
relabeling of its argument.
We formulate the above requirements quantitatively

using Birkhoff’s theorem [22,23], which states that the
convex hull of permutation matrices is the class of doubly
stochastic matrices (their components are non-negative
real numbers, and each row and column sums to 1). The
Birkhoff theorem thus implies that a probability vector q
obtained from p by a random relabeling is more uncertain
than the latter if and only if the two are related by a doubly
stochastic matrix, q ¼ Dp, which is equivalent to q � p.
The last equation is known as a majorization relation [20]
and consists of a system of d inequalities. (Avector x 2 Rd

is majorized by a vector y 2 Rd, and write x � y, when-

ever
P

k
j¼1 x

#
j �

P
k
j¼1 y

#
j for all 1 � k � d� 1, withPd

j¼1 x
#
j ¼

Pd
j¼1 y

#
j. The down-arrow notation denotes

that the components of the corresponding vector are

ordered in decreasing order, x#1 � x#2 � � � � � x#d.) The

above discussion implies that any measure of uncertainty
has to preserve the partial order induced by majorization.
The class of functions that preserve this order are the
Schur-concave functions. These are functions � on a
d-dimensional probability space, �: Rd ! R, for which
�ðxÞ � �ðyÞ, whenever x � y,8 x, y 2 Rd. We therefore
define a measure of uncertainty as being any non-negative
Schur-concave function that takes the value zero on
the vector x ¼ ð1; 0; . . . ; 0Þ. The last requirement is not
essential but is convenient as it ensures that the measure
is non-negative.
Our definition for a measure of uncertainty is very

general and resulted solely from requiring monotonicity
under random relabeling; it also encompasses the most
common entropy functions used in information theory,
but it is not restricted to them. As we are not concerned
with asymptotic regimes, we use in the following the most
general � to quantify uncertainty, without making any
assumptions about its functional form.
Having defined what a measure of uncertainty is, we

now use it to study uncertainty relations. Let � be a mixed
state on a d-dimensional Hilbert space H ffi Cd. For
simplicity of the exposition, we first consider two basis

FIG. 1 (color online). With probability r Alice samples from a
random variable (blue dice), and with probability 1� r, Alice
samples from its relabeling (red dice), but at the end of the
protocol she ‘‘forgets’’ where she sampled from. The resulting
probability distribution rpþ ð1� rÞ�p is more uncertain than
the initial one associated with the blue (red) dice p (�p).

FIG. 2 (color online). A quantum state is measured using two
orthonormal bases. We collect the induced joint probability
distribution in a vector p � q and quantify its uncertainty in
terms of a majorization relation, independently of the state �.
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(projective) measurements. We denote the two orthonor-
mal bases of H by fjamigdm¼1 and fjbnigdn¼1. We also
denote by pmð�Þ ¼ hamj�jami and qnð�Þ ¼ hbnj�jbni the
two probability distributions obtained by measuring �with
respect to these bases. We collect the numbers pmð�Þ
and qnð�Þ into two probability vectors pð�Þ and qð�Þ,
respectively. The goal of our work is to bound the uncer-
tainty about pð�Þ and qð�Þ by a quantity that depends only
on the bases elements but not on the state �. The object of
our investigation is therefore the joint probability distribu-
tion pð�Þ � qð�Þ.

The main result of our article is an uncertainty relation
of the form, as schematically depicted in Fig. 2

pð�Þ � qð�Þ � !; 8 �; (4)

where! is some vector independent of � that we explicitly
calculate. A majorization uncertainty relation of a similar
form was first introduced by Partovi in [21]; however,
his right-hand side of the majorization relation is not
explicit but written in terms of supremum over all density
matrices, which makes it difficult to calculate. We call (4) a
universal uncertainty relation (UUR) as, for anymeasure of
uncertainty �,

�½pð�Þ � qð�Þ� � �ð!Þ; 8 �: (5)

The UUR (4) generates in fact an infinite family of uncer-
tainty relations of the form (5), one for each �. The right
hand side of (5) provides a single-number lower bound on
the uncertainty of the joint measurement results. Whenever
� is additive under tensor products (e.g., Renyi entropies,
minus the logarithm of theG concurrence [24] or minus the
logarithm of the minimum nonzero component of the
probability distribution), (5) splits as

�½pð�Þ� þ�½qð�Þ� � �ð!Þ: (6)

We now construct the d2-dimensional vector ! appear-
ing on the right-hand side of our UUR (4). Let Ik 	 ½d� 

½d� be a subset of k distinct pair of indices (m, n), where [d]
is the set of natural numbers ranging from 1 to d. Let

�k :¼ max
Ik

max
�

X
ðm;nÞ2Ik

pmð�Þqnð�Þ; (7)

where the outer maximum is over all subsets Ik with
cardinality k and the inner maximum is taken over all
density matrices. Then the vector ! in the UUR (4) is
given by

! ¼ ð�1;�2 ��1; . . . ;�d ��d�1; 0; . . . ; 0Þ: (8)

Moreover, we show in the Appendix that �k ¼ 1, for all
d � k � d2.

The quantities �k in (7) can be in general difficult to
calculate explicitly, as they involve an optimization prob-
lem. However, in the Appendix we show that the first two
elements can be computed explicitly as

�1 ¼ 1

4
½1þ c�2; �2 ¼ 1

4
½1þ c0�2; (9)

where c :¼ maxm;njhamjbnij, and

c0 :¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhamjbnij2 þ jham0 jbn0 ij2

q
;

where the maximum is taken over all indices m ¼ m0 and
n � n0, and over all indexes n ¼ n0 and m � m0.
For k > 2, we upper bound each �k in (7) by

~�k :¼ max
R;S

jRjþjSj¼kþ1

max
�

� X
m2R

pmð�Þ
��X

n2S

qnð�Þ
�

(10)

¼ 1

4
max
R;S

jRjþjSj¼kþ1

�����
X
m2R

jamihamj þ
X
n2S

jbnihbnj
�����
2

1
� 1; (11)

where R (S) are subsets of distinct indices from [d], jRj
(jSj) denotes the size (number of elements) of R (jSj),
and k � k1 denotes the infinity operator norm—which, for
positive operators (as it is in our case), coincides with the

maximum eigenvalue of its argument. Moreover, ~�d ¼ 1.

Note that �k ¼ ~�k for k ¼ 1, 2, and otherwise �k � ~�k

since for a fixed �, all the terms in the sum of (7) are strictly
contained in the expression (10). The equality in (11) is
nontrivial and follows from the main technical Theorem
of this article (See Theorem 1 in the Appendix):
max� Trð�AÞTrð�BÞ ¼ ð1=4ÞkAþ Bk21, for two projec-

tions A and B.
Similar to the definition of the vector ! in (8), we

construct the vector ~! as in (8) by replacing �k with
~�k.

A simple calculation (see Appendix) shows that

pð�Þ � qð�Þ � ~!; 8 �: (12)

Therefore ~! provides a (weaker) lower-bound for the
UUR (4), but which is now explicitly computable.
To appreciate the generality of our UUR (4), we

compare in Fig. 3 the best known lower bounds for the
uncertainty of the measurement in two bases with our
induced uncertainty relation (5), in which we take � to
be the Shannon entropy H. We consider the region in
which c > 0:83, for which the best known bound [25]
has an explicit analytical form. We note that our bound
overperforms [25] in a large number of instances (around
90% of the time). For c < 0:83, our bound tend to be
slightly worse than [25], but this is expected since our
uncertainty relation is valid for all measures of uncertainty
and is not optimized for a specific one such as Shannon’s.
Next we take � ¼ H1 in (5) and note that we recover
Maassen’s and Uffink bound [4] for the minimum entropy,
which is tight. Finally, choosing � ¼ H� (Renyi-�
entropy) in (5) provides yet a novel entropic uncertainty
relation valid for all values of the parameter �.
We now extend our results to the most general case of

L � 2 positive operator valued measures (POVMs).

Denote by f�ð‘Þ
�‘
gN‘

�‘¼1 the ‘th POVM, with 1 � ‘ � L.
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The quantity N‘ denotes the number of elements in the lth
POVM, and the index �‘ labels its elements, with �‘ ¼
1; 2; . . . ; N‘. A measurement of � with the ‘th POVM�ð‘Þ

induces a probability distribution vector pð‘Þð�Þ¼ ðpð‘Þ
1 ð�Þ;

pð‘Þ
2 ð�Þ;...;pð‘Þ

N‘
ð�ÞÞ. We discover a UUR of the form

OL
‘¼1

pð‘Þð�Þ � !; 8 �; (13)

where the quantity on the left-hand side represents the joint
probability distribution induced by measuring � with each

POVM �ð‘Þ. Here,

! ¼ ð�1;�2 ��1;�3 ��2; . . . ;�N ��N�1Þ; (14)

where N � N1N2 . . .NL, and for k ¼ 1; 2; . . . ; N

�k :¼max
Ik

max
�

X
ð�1;...;�LÞ2Ik

pð1Þ
�1
ð�Þpð2Þ

�2
ð�Þ���pðLÞ

�L
ð�Þ; (15)

where Ik 	 ½N1� 
 ½N2� 
 � � � 
 ½NL� is a subset of k
distinct string of indices ð�1; . . . ; �LÞ (here [Nj] is the set

of natural numbers ranging from 1 to Nj).

Since the above quantities�k can in general be difficult
to calculate explicitly, we have found tight upper bounds
~�k that do not involve an optimization over all states �.

Our upper bound �k � ~�k is given by

~�k :¼ max
S1 ;...;SLP

L
‘¼1

jS‘ j¼Lþk�1

�����
1

L

XL
‘¼1

� X
�‘2S‘

�ð‘Þ
�j

������
L

1
� 1; (16)

where S‘ denotes a subset of distinct indices from [N‘],
jS‘j denotes the size (number of elements) of S‘. Note that

by definition�N ¼ 1. We define the vector ~! as in (14) by

replacing�k with
~�k, and then show in the Appendix that

the UUR in Eq. (13) holds with ! replaced by ~!.
Note that an L > 2 measurement uncertainty relation

can be trivially generated by summing pairwise two-
measurement uncertainty relations, one for each pair of
observables. Our UUR (13) is more powerful and is not
of this form. This fact can be seen most clearly in a set of
measurement operators in which any two observables share
a common eigenvector. In this case, a two-measurement
uncertainty relation will provide a trivial lower bound
of zero; hence, the pairwise sum must also be zero.
However, the vector ! in (14) is in general different
from (1; 0; . . . ; 0), (see example 1 in Sec. B of the
Supplemental Material [26] ), thus providing a nontrivial
bound for the UUR (13) (or the induced family obtained by
applying various uncertainty measures � on it). Finally,
the UUR (13) is not restricted to MUBs or particular values
of L, but is valid for any number of arbitrary bases.
To summarize, we derived two explicit closed form

uncertainty relations, Eq. (4), which is valid for measure-
ments in two orthonormal bases, and (13), which is the
generalization of the former to the most general setting of
L POVMs. Our relations are ‘‘fine-grained’’; they do not
depend on a single number (such as the maximum overlap
between base elements), but on all components of the
vector ~!, which we compute explicitly, via a majorization
relation. Our uncertainty relations are universal and cap-
ture the essence of uncertainty in quantum mechanics, as
they are not quantified by particular measures of uncer-
tainty such as Shannon or Renyi entropies.
We did not explore here which bases provide the most

uncertain measurement results for the UURs. One may
conjecture that MUBs are the suitable candidates. Indeed,
this seems to be the case, and we conjecture that �k in (7)

is given by�k ¼ 1=4ð1þ ffiffiffiffiffiffiffiffi
k=d

p Þ2, which can then be used
to construct [see (8)] the vector!MUB for the UUR (4). The
conjecture is strongly supported by numerical simulations.
Moreover, we observed that for bases that are not MUBs,
the best ! we were able to find (numerically) always
majorizes !MUB, i.e., !MUB � !. This provides strong
support for the initial assumption that MUBs provide the
most uncertain measurement outcomes.
Another important direction of investigation is the

extension of the results presented here to uncertainty rela-
tions with quantum memory [27]. These are particularly
useful in the context of quantum cryptography. However,
such an extension is nontrivial and is left for future work.
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FIG. 3 (color online). For each run we randomly generate two
orthonormal bases and a random state jc i in a 6-dimensional
Hilbert space, then compute our lower bound Hð!Þ (right hand
side of (5), using the Shannon entropy H as a measure of
uncertainty); c ¼ maxm;njhamjbnij denotes the maximum over-

lap between the two bases.
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