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In an attempt to understand the origin of relaxor ferroelectricity, it is shown that interesting behavior

of the onset of nonergodicity and of precursor nanodomains, found in first-principles simulations of the

relaxor alloy BaðZr1�xTixÞO3, can easily be understood within a simple mapping to a soft pseudospin

glass.
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For several years, there has been much interest in relaxor
ferroelectric alloys based on the the generic pure ionic
perovskite form ABO3, where A, B, and O have charges
þ2, þ4, and �2, but with the single B-type ion replaced
by random mixtures of B0 and B00 [1–3]. They exhibit
(i) frequency-dependent peaks in their dielectric suscepti-
bilities as a function of temperature but without any macro-
scopic polarization in the absence of applied fields and
(ii) higher-temperature manifestations of nanoscale polar
domains [4]. They have proven to be of significant appli-
cation value, but there is no universally accepted under-
standing of the origin of their behavior. The present
objective is to provide such an understanding within the
context of a recently recognized system, employing only
minimal modeling and simple mappings and without the
need to posit a priori random bonds or random fields.

The originally discovered [5] and most studied relaxor
is PbðMg1=3Nb2=3ÞO3 (PMN). It exhibits the features men-

tioned above, as well as nonergodicity [6,7] beneath a
temperature comparable with that of the finite-frequency
susceptibility peaks. However, it is complicated by the fact
that Mg and Nb are not isovalent, giving rise to perturbing
extra charges and hence random fields. By contrast, in
BaðZr1�xTixÞO3 (BZT) Zr and Ti are isovalent, of charge
þ4. Yet, it still exhibits characteristic relaxor features
[8–10] for a range of relative (Zr:Ti) concentrations.

A recent first-principles andMonte Carlo computer simu-
lation study of BZT [11] has demonstrated an ergodicity-
breaking phase transition at which a separation sets in
between dielectric susceptibilities measured under different
protocols and has also exhibited nanodomains above this
transition temperature. This communication provides a
physical explanation of this transition as the onset of a soft
spin-glass-like state, extends the analogy to explain the more
general phase structure of BZT, and demonstrates an
expected origin of the observed nanodomains.

BaZrO3 and BaTiO3 are ABO3 ionic crystals with posi-
tive charges on the Ba, Zr, and Ti ions and negative charges
on the O ions. Their equilibrium structures correspond to
minimizing their free energies under the resultant compet-
ing (spatially frustrated) interactions. At high temperatures

both have simple perovskite structures, but at low temp-
erature BaTiO3 transforms to a ferroelectric through spon-
taneous coherent displacement of the Ti ions; BaZrO3

remains paraelectric as the temperature is lowered. The
particular current interest is in alloys in which the B sites
are occupied randomly by Zr or Ti.
Akbarzadeh et al. [11] studied the alloy system with

equal concentrations of Zr and Ti, allowing for displace-
ments of all the ions (in a finite-size simulation) and using
parameters obtained from first-principles computer model-
ing of small cells. They examined the susceptibilities
measured (i) by directly observing the polarization when
cooled in a small applied field and (ii) from the correlation
function in the absence of an applied field, using the
conventional equilibrium statistical physics relationship
between response and correlation. These measurements
increased with reducing temperature and roughly coin-
cided above a characteristic temperature Tf but started to

diverge significantly from one another at this temperature,
with the directly evaluated susceptibility exhibiting a pla-
teau beneath it while that determined from the correlations
decreased, giving a cusp at Tf. This is precisely what is

expected from mapping to a pseudospin glass.
As noted and utilized in Ref. [11], a crucial difference

between systems with Zr or Ti at a B site lies in the strength
of the effective local restoring forces associated with
displacements of the ions from their positions in the pure
matrix; these are weak for Ti, permitting the low-
temperature ferroelectric distortion observed in BaTiO3,
whereas in BaZrO3 the Zr restoring force is much stronger
and prevents macroscopic global distortion even to zero
temperature.
Akbarzadeh et al. [12] modeled the alloy in terms of

local mode variables centered on B sites, including aver-
aged intersite interaction terms, simple local restoring-
force terms of strengths corresponding to the appropriate
local B-site occupation, and associated random fields and
random strains. However, they found that their results are
essentially unaffected by the random-field and random-
strain terms, and hence these will be ignored from the
outset here. For conceptual purposes, the modeling can
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be simplified further by absorbing the effects of the Ba
and O ions into an effective system involving only the
B-site ions. Ignoring any local anisotropy for illustrative
simplicity, one is then left with a model characterized by an
effective Hamiltonian

H ¼ X

i

f�ijuij2 þ �ijuij4g þ
X

ij

Havg
int ðui;uj;RijÞ; (1)

where the sites fig are occupied randomly by Ti or Zr
according to the admixture concentration, with corresp-
onding � and �. Hint represents interactions between fug at
different sites; the superscript favgg indicates that, as in
Ref. [11], the effects of the randomness are averaged and
details of quenched randomness in Hint are ignored. The
zero-temperature phase structure is given by minimizingH
with respect to the fuig.

Considering first a pure system, the sign of � determines
whether this Hamiltonian can, in principle, exhibit displa-
cive or order-disorder transitions, with positive � being
displacive and the true order-disorder limit corresponding
to strongly negative �, in each case with � positive. Within
mean-field theory, in the order-disorder case there will
always be a transition to an ordered phase as the tempera-
ture is lowered from the high-temperature paramagnetic
phase, whereas in the displacive case a minimal strength
of bootstrapping binding energy gain from Hint, through
self-consistent displacements, is needed to overcome the
local penalty from the � term. For BaTiO3, �

Ti is small
enough to permit ferroelastic, and hence ferroelectric, order
being favored in this case [13]. By contrast, �Zr is too large
for self-consistent displacive order and only paraelectricity
fui ¼ 0g is possible at all temperatures for BaZrO3.

Turning now to the alloy and noting that the large �Zr

implies that all the sites fig occupied by Zr atoms have
fui ¼ 0g and hence may be ignored, one is left with the
effective Hamiltonian

Heff ¼
X

iðTiÞ
f�Tijuij2þ�Tijuij4gþ

X

ijðTiÞ
Hintðui;uj;RijÞ; (2)

with sums now restricted to B sites occupied by Ti ions.
The fact that experimentally the low-temperature state

of BaTiO3 is ferroelectric shows that the dominant inter-
action in Hint is ferroelectric. However, there are both
ferroelectric and antiferroelectric contributions at different
separations [14,15].

This model is now recognizable as a soft pseudospin
analog of canonical experimental spin-glass systems [16],
such as Au1�xFex or EuxSrð1�xÞS, whose Hamiltonians

may be written as

H ¼ � X

ijðMagÞ
JðRijÞSi � Sj; (3)

where the Si are hard spins [17], JðRÞ is a translationally
invariant but spatially frustrated exchange interaction,
and the sum is restricted to sites occupied by magnetic

atoms [21]. For large x, high concentrations of magnetic
atoms, these systems are periodically magnetically
ordered, but for lower concentrations of magnetic atoms
a nonperiodic, nonergodic, but still cooperative spin-glass
phase results [22].
With this identification, it becomes clear that within

some intermediate concentration range xc > x > xp of Ti

on the B sites in the alloy BaZrð1�xÞTixO3, there will be a

pseudospin-glass transition at a critical temperature TgðxÞ,
marking the onset of nonergodicity and preparation depen-
dence, the zero-field-cooled (ZFC) susceptibility peaking
and the field-cooled (FC) susceptibility ‘‘freezing’’ [24].
Given that the FC susceptibility essentially measures a
full Gibbs average over all pure states while the ZFC
essentially measures the susceptibility restricted to a single
pure macrostate [25,26], this explains the corresponding
observations of Akbarzadeh et al. [11], with their Tf

identified as Tg, their x ¼ 0:5 being within this relaxor or

pseudospin-glass concentration range [8], and FC and ZFC
corresponding to the two different susceptibility measure-
ments they made [27].
For x > xc the transition is to ferroelectricity at a TcðxÞ

that increases with x, reaching the pure BaTiO3 value at
x ¼ 1. As x is decreased below xc, Tg is also expected to

decrease with x, but initially less quickly, until a further
critical concentration xp, beyond which only paraelectricity

exists as a thermodynamic phase; thus, we have the seq-
uence with increasing Ti concentration (x) paraelectric !
relaxor ! ferroelectric for 0�xp�xc�1 [28], in accord

with experiments [8,9].
As noted earlier, the best known signature of relaxors

is the feature of frequency-dependent peaks in the suscep-
tibility as a function of temperature, with the peak tem-
perature increasing with increasing frequency [5,30]. It is
observed experimentally for BZT [8–10]. A similar
frequency-dependent peaking is also a well-known feature
of spin glasses; see, e.g., Refs. [31,32]. In spin glasses, it is
also well known that the peak temperature tends in the
zero-frequency limit to that of the onset of nonergodicity as
measured by deviation of the FC and ZFC susceptibilities.
Hence, the mapping above would also lead one to expect
this famous relaxor signature.
There has been much interest in the precursor observa-

tion (or interpretation) of ‘‘nanodomains’’ in relaxors, and
these were also seen in the simulations of Akbarzadeh et al.
[11], as well as in experiments [8]. They, too, can be under-
stood from the above ‘‘induced-moment’’ soft pseudospin
modeling, as corresponding to longish-lived ‘‘local
moments’’ on statistically occurring clusters of Ti ions.
To see this, H and Heff may be reinterpreted as Ginzburg-
Landau free energies with their parameters renormalized as
a function of temperature. The effective ‘‘local nanodo-
mains’’ are given by minimization with respect to the ui,
yielding values given in simple mean-field theory by the
self-consistent solution of
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~� iui þ 2~�iuijuij2 þ
X

j

@ ~Hintðui;uj;RijÞ=@ui ¼ 0; (4)

with all the terms effectively temperature renormalized but
with the most important conceptual feature that the f~�g
increase with increasing temperature relative to the inter-
action term. This equation is closely analogous to that for a
mean-field theory of cluster-moment formation in transi-
tion metal alloys introduced in Ref. [20] and, similarly to
that case, the formation of local nanodomains is relatable
to an Anderson localization model [33,34].

Simplifying for illustrative purposes to a simple scalar
analog of Eq. (4), we consider

~�iui þ 2~�iu
3
i �

X

j

~Jijuj ¼ 0 (5)

and compare it with an Anderson-type eigenequation

~�i�i �
X

j

~Jij�j ¼ E�i: (6)

Nonzero u solutions to Eq. (5) correspond to solutions
of Eq. (6) with E< 0. However, solutions to Eq. (6) with
quenched � disorder can be either localized or extended:
localized states at the extremities of the band of eigenstates
separated from a region of extended states by lower
EmL

ðx; TÞ and upper EmU
ðx; TÞ ‘‘mobility edges.’’ Note

that the density of states and the mobility edges are tem-

perature dependent through the renormalization of the ~�
and ~J, decreasing with decreasing T. Thus, the onset of
mean-field ‘‘cluster moments,’’ observable on finite time
scales as nanodomains, is given by the onset of solutions
E � 0 to Eq. (6), while the true thermodynamic transition,
which requires an extended state, occurs only when the
mobility edge EmL

ðx; TÞ becomes zero.

While in the usual electronic Anderson situation the
f~Jijg � 0 so that extended states are ferroelectric, in the

present frustrated case with f~Jijg of both signs the extended
states can also be spin-glass-like for finite x, without any
periodic order or macroscopic orientation. This leads to the
expectation of a true thermodynamic ferroelectric phase
transition as temperature is lowered at high x, passing over
to transition to a spin-glass phase as x is reduced beyond a
critical xc, and eventually, beneath xp, exhibiting paraelec-

tric behavior only, but also with higher-temperature non-
equilibrium nanodomain precursors for all 0< x< 1, the
size of the precursor region reducing to zero as the pure
limits are approached [35].

We might also note that in the Anderson analogy above,
quasifrozen nanoregions need not necessarily be internally
ferroelectric and indeed deviations from collinearity were
observed in the simulations of Ref. [11].

The concept of polar nanoregions (PNRs) interacting
among themselves and eventually freezing cooperatively
macroscopically can, in principle, be given substance by
defining nanomoments in terms of negative eigenvalue
eigenfunctions of Eq. (6), introducing them into an

expanded partition function by adding them as variables,
with delta functions ensuring their identification, and then
integrating out the original variables [38].
Note that neither random fields nor random interactions

were posited above [39,40]. However, Heff can be mapped
into a random-bond model

HEA
eff ¼ X

l

�u2i þ �u4i þ
X

lm

Jlmulum; (7)

where now the l are relabeled Ti sites, � and � are site
independent, and all the randomness is in the fJlmg. In a
precise mapping, the fJlmg code the spatial distribution of
Ti ions. Following the conceptualization introduced by
Edwards and Anderson [41] that the important physics of
spin glasses is maintained as long as one retains frustration
and quenched disorder, one would expect that a further
assumption of independent randomness of fJlmg would
maintain the crucial physics. However, to allow for the
transition between ferroelectric and relaxor phases with x,
the fJlmg distribution should have a tunable (x-dependent)
mean [42,43].
These analogies also suggest that, within the relevant

intermediate range of x, BZT should exhibit other behav-
iors corresponding to those known for spin glasses, not
only at the onset (where the susceptibility peaks) but also
within the relaxor phase. Similar behavior and explanation
might also be anticipated in other isovalent alloys of a
frustrated displacive (or mixed displacive and weak
order-disorder) ferroelectric (or antiferroelectric) and an
appropriate paraelectric partner [44]. The corresponding
analogy between hard dipolar (strong order-disorder) and
other orientational glasses and hard spin glasses has long
been recognized [45]; for reviews, see Refs. [46,47].
The modeling of Eq. (4) is of course only mean field and

so misses both thermal fluctuation effects and dynamics.
However, a similar extended simple modeling based on
disorder only in local restoring terms and a spatially frus-
trated periodic interaction could in principle be extended
to treat these.
Finally, it should be emphasized that the discussion

above is minimal, a skeleton modeling to expose the
physical core. More ‘‘flesh’’ is needed for the whole body.
The author thanks Professor Rasa Pirc for drawing his
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