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We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with

noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the

relative orientations of the d vector, characterizing the superconducting order parameter, and the

magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor,

the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a

supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the super-

conducting spacer is easily recognized. Our findings open new perspectives in designing spintronics

devices based on the cooperation of ferromagnetic and triplet correlations.
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Introduction.—The realization of devices with synthetic
materials offers interesting technological opportunities.
Within this class of devices, the spin valves (SVs) are a
notable example. They are made of two ferromagnetic
layers separated by a nonmagnetic spacer and show a
significant change in the electrical resistance depending
on whether the magnetizations of ferromagnetic regions
are in a parallel or an antiparallel configuration. This effect,
more evident in multilayer structures displaying the giant
magnetoresistance effect [1–3], finds application in the
information technology industry (e.g., sensors for hard
disk drives, magnetic-random-access memory).

The spacer properties strongly affect the SV electric
response and, thus, various SV devices have been proposed
to study the phase coherent transport through spacers
made of nanowires [4], carbon nanotubes [5], ballistic
low-dimensional systems [6], and singlet-superconducting
regions [7,8]. All these devices, however, contain a scalar
spacer, i.e., a middle layer unable to add (nonmagnetic)
vectorial quantities relevant in determining the magneto-
resistive response of the SV.

Since triplet superconductors (TSCs) can support
polarized currents, they represent natural candidates to
study SVs having spacers with exotic (i.e., nonscalar)
properties. Since the discovery of triplet superconductivity
in Sr2RuO4 [9], there has been growing interest in the
properties of TSC heterostructures [10–19]. Despite this,
the study of devices combining TSCs and ferromagnets is
still in its infancy and only few unconventional effects have
been predicted [13,18–20].

In this Letter, we study the magnetoresistance (MR)
properties of a SV whose spacer is a triplet superconductor
(see upper panel, Fig. 1). This system is the prototype of a
SV having a vectorial spacer. We demonstrate that triplet
superconducting spin valves can transmit polarization in-
formation by means of dissipationless Cooper pairs (CPs)
current in the absence of a quasiparticle (QP) contribution

which is instead dominant in SVs with singlet supercon-
ducting spacers. The emergence of a magnetoresistance
which does not decay with the superconducting spacer
length ds (see Fig. 1) over distances of several times the
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FIG. 1 (color online). (Upper panel) Triplet-spin-valve device.
A TSC is intercalated between the nanostructured magnetic
regions M1 and M2 whose magnetic momenta ~M1 and ~M2,
belonging to the x� y plane, form the angle � and � 2
½0; �=4; �=2� with respect to the d vector (parallel to the x
direction) characterizing the superconducting state. The system
is biased by means of nonmagnetic leads N1 and N2 having a
transverse dimension W. (Lower panel) Magnetoresistance
curves as a function of the superconductor length dS. The model
parameters are fixed as follows: "=� ¼ 0:01, h ¼ 0:65,
� ¼ 1:5, ZBTK ¼ 1, � ¼ �=2, � ¼ �=4, dF ¼ �=10.
Differently from an s-wave spin valve, the MR is a nonvanishing
function of dS.
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coherence length � is here called the supermagnetore-
sistance effect (SMRE) [21]. Under the supermagnetore-
sistance effect, the SV response does not exhibit the
conventional Julliere-like [22] behavior, according to
which the MR depends on the relative orientation of the

polarizations ~M1, ~M2 of the magnetic regions (i.e., MR /
~M1 � ~M2). The violation of the Julliere-like behavior is the
distinctive feature of the novel class of SVs having a
vectorial spacer.

Theoretical description.—We consider the triplet
SV (TSV) of Fig. 1 and combine the Bogoliubov–de
Gennes (BdG) approach with the scattering matrix formal-
ism for describing the transport properties along the z
direction. The Bogoliubov–de Gennes wave function
�ðrÞ describing the system is determined by the eigenvalue
problem (z � 0, dS, dS þ dF)

ĤðrÞ �̂ðrÞ
�̂yðrÞ �Ĥ�ðrÞ

" #
�ðrÞ ¼ E�ðrÞ; (1)

where the hat sign indicates 2� 2 matrices in spin space,
while the single particle Hamiltonian can be written as
follows:

ĤðrÞ ¼
�
� @

2r2

2m
� EF þ VintðrÞ

�
1̂� g�B�̂ �MðrÞ: (2)

Here, we introduced an interface potential controlling the
barrier transparencies VintðrÞ ¼ U½�ðzÞ þ �ðz� dSÞ þ
�ðz� dS � dFÞ� and the magnetic fields describing the
ferromagnetic regions M1 and M2

MðrÞ ¼ M1�ðzÞvð�Þ þM2ðrÞvð�Þ; (3)

v ð�Þ ¼ cosð�Þex þ sinð�Þey; (4)

ex=y=z being the orthogonal triad of unit vectors. The region

M1, corresponding to the so-called free layer, is assumed
to be very narrow and, thus, is modeled using a Dirac
delta potential whose amplitude is proportional to the
magnetic momentum M1. The function M2ðrÞ, describing
the magnetization of the region M2, is taken spatially
homogeneous inside the region and zero elsewhere.

The gap matrix in Eq. (1) is defined as �̂ðrÞ ¼ i½�̂ �
dðrÞ��̂y, where dðrÞ is the vector defining the order

parameter of the TSC. Here, we are interested in the case
of the equal-spin-pairing unitary state for which dðrÞ ¼
�ðrÞex represents a convenient choice [23]. With this
assumption, the triplet Cooper pairs have a z component
of the spin Sz ¼ �@, while the condensate has zero net spin
polarization. The magnitude of the gap � is assumed to be
constant throughout the superconducting region and
zero elsewhere. In the following, we consider the three
possible orbital pairing states: py wave, �k ¼ �ky=kF; pz

wave, �k ¼ �kz=kF; and the chiral pzþiy wave,

�k ¼ �½kz þ iky�=kF [24]. We assume the translational

invariance along the y direction implying the conservation

of the wave vector ky parallel to the interface. Thus, the

wave function can be written as �ðrÞ ¼ eikyyc ðzjE; kyÞ
leading to an effective one-dimensional scattering prob-
lem for c ðzjE; kyÞ, being the energy E and ky conserved

quantum numbers.
The conductance of the system can be obtained within

the scattering field theory [25] where one defines the field

�̂jðz; tjkyÞ ¼
X
�;�

Z dEe�iEtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@jvzðEÞj

p j�i � j�i

� ½â�j�ðE; kyÞeik
ðzÞ
�
z þ b̂�j�ðE; kyÞe�ikðzÞ

�
z�: (5)

The scattering operators â�j�ðE; kyÞ [b̂�j�ðE; kyÞ] destroy an

incoming (outgoing) particle of species � 2 fe; hg and
spin projection � 2 f"; #g in the lead j 2 fL; Rg, while

the wave vector kðzÞ� ¼ 	�kzðEÞ ¼ 	�jkðEÞj cosð
inÞ
(	e ¼ �	h ¼ 1) along the transport direction is written

within the Andreev approximation [26], i.e., vj��
z ðEÞ �

vzðEÞ ¼ @jkðEÞj cosð
inÞ=m, where 
in is the incidence
angle. The scattering matrix S relates the incoming and
the outgoing processes through the equation

b̂�j�ðE; kyÞ ¼
X

�0�0j0
S��0
jj0��0 ðE; kyÞâ�0

j0�0 ðE; kyÞ; (6)

and its elements are obtained by matching the wave
functions of the regions N1;2, TSC, and M2 imposing the

boundary conditions (BCs) at the interfaces [27]. For
instance, the discontinuity at z ¼ 0 described by the
local potential ½U� g�BM1�̂ � vð�Þ��ðzÞ implies the
following boundary conditions: (i) c ðz ¼ 0þjE; kyÞ ¼
c ðz ¼ 0�jE; kyÞ; (ii) @zc ðz ¼ 0þjE; kyÞ � @zc ðz ¼
0�jE; kyÞ ¼ kF½14�4ZBTK � �Að�Þ�c ðz ¼ 0þjE; kyÞ,
where we have introduced the matching matrix

Að�Þ ¼ �̂ � vð�Þ 0

0 �̂� � vð�Þ

" #
; (7)

the Blonder-Tinkham-Klapwijk (BTK) parameter [28]
ZBTK ¼ 2mU=ð@2kFÞ and the spin-active barrier strength
� ¼ 2m½g�BM1�=ð@2kFÞ. The S matrix depends on the
incidence angle 
in through the conserved quantity
ky ¼ jkðEÞj sinð
inÞ.
In the limit of low-bias eV=� 	 1, the linear response

current I i flowing through the ith lead is given by the sum
of independent contributions of the elementary processes
labeled by all possible ky, i.e., I i ¼

P
j;ky

gijðkyÞð�j ��sÞ,
where gij is the conductance tensor; �j is the electro-

chemical potential of the jth lead while in the supercon-
ducting region �s is fixed by imposing the electric charge
conservation. In the symmetric case (g11 ¼ g22), the
two-terminal conductance is given by G ¼ ð �g11 � �g12Þ=2
with the definition �gij ¼ P

ky
gijðkyÞ [29]; it can be explic-

itly written in terms of the scattering matrix elements as
follows [30]:
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G ¼ e2kFW

�h

Z
d�d
in½�@�fð�Þ�eq

�
cosð
inÞ

2

�

�
� X
�2fe;hg

M��
12 ð�;
inÞ þMhe

11ð�;
inÞ

þMeh
11ð�;
inÞ

�
; (8)

where M
�
ij ¼ Tr½S
�y

ij S
�
ij �, the trace being performed

over the spin. When the incidence angle 
in varies in the

interval ½��; ��, the sum rule
P

j
;ky
M�


ij ðE; kyÞ ¼ 2N ?
is obeyed with the transverse modes number given by
N ? ¼ kFW sinð�Þ=�.

Results.—Here, we define the magnetoresistance
of a TSV as MR ¼ 1�Gð�;�ÞGð� ¼ �;�Þ�1, being
Gð� ¼ �;�Þ the conductance in parallel configuration of
the magnetic momenta of the ferromagnetic regions and �
(�) the angle formed by M1 (M2) with the d vector. We
consider the zero-temperature limit which is appropriate to
study SVs containing TSCs whose typical critical
temperatures Tc are quite low. For instance in Sr2RuO4,
Tc � 0:7–1:4 K and the zero temperature coherence length
�ðT ¼ 0Þ � 70 nm [31]. In the computation, we set the

maximal incidence angle � ¼ 35
 to mimic the angular
dispersion of electron waves coming from a remote con-
striction. The ferromagnetic region M2 is made of a weak
ferromagnet characterized by normalized Zeeman energy
h ¼ ðg�BM2Þ=EF such that h 2 ½0:05; 0:65�, while the

spin-dependent wave vector k�z � kF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð
inÞ þ �h

p
is

a real quantity for both spin polarizations.
In Fig. 2, the magnetoresistance curves as a func-

tion of the angle �, for short (dS ¼ 2�) and long
(dS ¼ 5�) spacers, are shown. The magnetization direction
of the region M2 is fixed to � ¼ 0 [Figs. 2(a) and 2(b)],
� ¼ �=4 [Figs. 2(c) and 2(d)], and � ¼ �=2 [Figs. 2(e)
and 2(f)]. The magnetoresistance curves pertaining to the
symmetries pz and pzþiy shown in Figs. 2(a), 2(c), and 2(e)

are described by the fitting function MRð�;�Þ ¼ F ð�Þ �
F ð�Þ, where F ðxÞ ¼ P

n¼1;2Bncos
nð2xÞ is a symmetry-

dependent function. The pzþiy symmetry is well described

by the function F ðxÞ with B1 � 0:2 and B2 ¼ 0; the case
of pz is instead described by B1 � ð0:6–0:9Þ � 10�2 and
B2=B1 � 5–9. For both cases, MRð�; �Þ is a separable
function of � and �, while for short superconducting
regions [see Figs. 2(b), 2(d), and 2(f) for dS ¼ 2�] the
magnetoresistance curves show a complicated behavior

FIG. 2 (color online). Magnetoresistance curves as a function of the angle � computed for the order parameter symmetry pz (green
filled square), py (blue filled diamond), pzþiy (red filled circle). The curves (a), (c), (e) are computed for dS ¼ 5�, while the curves (b),

(d), (f) are computed by setting dS ¼ 2�. The magnetization of the region M2 is fixed to form the angle: � ¼ 0 with the d vector for
the panels (a)–(b); � ¼ �=4 for the panels (c)–(d); � ¼ �=2 for the panels (e)–(f) (see the vertical dashed line). The remaining model
parameters are fixed as follows: "=� ¼ 0:01, h ¼ 0:65, � ¼ 1:5, dF ¼ �=10, ZBTK ¼ 1. The MRð�; �Þ curves show a period halving
from 2� periodicity (for dS ¼ 2�) to � (for dS ¼ 5�). The period halving is not observed for the py symmetry whose periodicity is

always 2�.
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induced by interference effects due to partial conversion of
the quasiparticles current into Cooper pairs current.

Moreover, the MR shows a peculiar � periodicity
for the chiral and pz symmetry of the order parameter,
while a 2� periodicity is always found in the py case.

The nonconventional � periodicity of the MR can be
explained by the fact that the quasiparticles and the
Cooper pairs current contribute differently to the MR: the
latter has a � periodicity, while the quasiparticles
flux presents a 2� periodicity. The MR curves of the py

symmetry always present a periodicity of 2� with respect
to �. This is related to the existence of a gapless line
(
in ¼ 0) along the transport direction where a quasipar-
ticle’s flux always coexists with a Cooper pair current [32].

In the case of pz and pzþiy symmetry, for short channel

(dS ¼ 2�) the quasiparticle’s current significantly contrib-
utes to the conductance determining a dominant 2�
periodicity. On the other hand, by increasing the length
of the superconducting spacer up to dS ¼ 5� a bulk-like
behavior, characterized by a dissipationless Cooper pairs
current, is established [32] and a � periodicity is observed.
The latter regime is not observable for SVs having a singlet
superconducting spacer where the polarized transport
is always sustained by a quasiparticle’s current. Under
this condition, the Julliere-like behavior MRð�; �Þ /
cosð�� �Þ is obeyed [22].

An additional fingerprint of the triplet correlations is
represented by the high magnetoresistance values com-
pared to the s-wave case [8]. The above interpretation
can be validated by the analysis of the Andreev reflection
(AR) probability [33], i.e., the dominant scattering event at
the normal-superconductor interface in which an incoming
electron is reflected as a hole. For a single spin active
interface (SAI), the AR probability is periodic of � with
respect to the magnetization angle � but the AR coefficient
presents a phase factor expði�Þ [33]. This phase can play a
role if a second spin active interface is added to the system
to form a SV. In fact, for short spacers, the phase difference
between the scattering coefficients of the two barriers
induces a dominant 2� periodicity. For long spacers,
the quasiparticle phase memory is limited to the lifetime
�� @=� of the excitation and, thus, the � period emerges
(see Fig. 3). As a consequence, the system behaves like a
sequence of two distant spin-active regions (M1 and M2)
interacting only through the condensate. The latter state-
ment explains the separability of the function MRð�; �Þ ¼
F ð�Þ �F ð�Þ and the breakdown of the Julliere relation.
Conclusions.—In conclusion, a SV modified by the

inclusion of a triplet superconducting spacer may represent
a novel system for spintronics, displaying an unconven-
tional magnetoresistive response. Differently from SVs
with normal or s-wave spacers, a TSV shows a magneto-
resistive behavior which depends on the relative orienta-
tions of the three vectors M1, M2, and the d vector. A
nonvanishing symmetry-dependent MR, supermagnetore-
sistance, has been obtained for long spacers (dS � 5�)
allowing the study of spintronic properties completely
determined by the dissipationless spin polarized currents
sustained by the Cooper pairs. Experimentally, the regime
of pure Cooper pairs spintronics is signaled by a � period-
icity of the MR vs � curves for the chiral and the pz

symmetries; a 2� periodicity is always found in thepy case.

The authors would like to thank F. Giubileo and
M. Cuoco for many useful discussions.

*Corresponding author.
fromeo@sa.infn.it

[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau,
and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).

[2] E. Hirota, H. Sakakima, and K. Inomata, Giant Magneto-
Resistance Devices (Springer, Berlin, 2002).

[3] S. S. P. Parkin, Phys. Rev. Lett. 71, 1641 (1993).
[4] H. Kum, J. Heo, S. Jahangir, A. Banerjee, W. Guo, and P.

Bhattacharya, Appl. Phys. Lett. 100, 182407 (2012).
[5] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A.
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