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Current theories of Kondo insulators employ the interaction of conduction electrons with localized

Kramers doublets originating from a tetragonal crystalline environment, yet all Kondo insulators are

cubic. Here we develop a theory of cubic topological Kondo insulators involving the interaction of �8 spin

quartets with a conduction sea. The spin quartets greatly increase the potential for strong topological

insulators, entirely eliminating the weak topological phases from the diagram. We show that the relevant

topological behavior in cubic Kondo insulators can only reside at the lower symmetry X orM points in the

Brillouin zone, leading to three Dirac cones with heavy quasiparticles.
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Our classical understanding of order in matter is built
around Landau’s concept of an order parameter. The past
few years have seen a profound growth of interest in
topological phases of matter, epitomized by the quantum
Hall effect and topological band insulators, in which the
underlying order derives from the nontrivial connectedness
of the quantum wave function, often driven by the presence
of strong spin-orbit coupling [1–9].

One of the interesting new entries to the world of topo-
logical insulators is the class of heavy fermion or ‘‘Kondo
insulators’’ [10–16]. The strong-spin orbit coupling and
highly renormalized narrow bands in these intermetallic
materials inspired the prediction [12] that a subset of the
family of Kondo insulators will be Z2 topological insula-
tors. In particular, the oldest known Kondo insulator SmB6

[17] with marked mixed valence character, was identified
as a particularly promising candidate for a strong topologi-
cal insulator, a conclusion that has since also been sup-
ported by renormalized band theory[13,16]. Recent
experiments [18–20] on SmB6 have confirmed the pres-
ence of robust conducting surfaces, large bulk resistivity,
and a chemical potential that clearly lies in the gap provid-
ing strong support for the initial prediction.

However, despite these developments, there are still
many aspects of the physics in these materials that are
poorly understood. One of the simplifying assumptions
of the original theory [12] was to treat the f states as
Kramer’s doublets in a tetragonal environment. In fact,
the tetragonal theory predicts that strong topological insu-
lating behavior requires large deviations from integral
valence, while in practice Kondo insulators are much
closer to integral valence [11]. Moreover, all known
Kondo insulators have cubic symmetry, and this higher
symmetry appears to play a vital role, for all apparent
‘‘Kondo insulators’’ of lower symmetry, such as CeNiSn
[21] or CeRu4Sn6 [22], have proven, upon improving
sample quality, to be semimetals. One of the important

effects of high symmetry is the stablization of magnetic f
quartets. Moreover, Raman [23] experiments and various
band-theory studies [24,25] indicate that it is the Kondo
screening of the magnetic quartets that gives rise to the
emergence of the insulating state.
Motivated by this observation, here we formulate a

theory of cubic topological Kondo insulators, based on a
lattice of magnetic quartets. We show that the presence of
a spin quartet greatly increases the possibility of strong
topological insulators while eliminating the weak topologi-
cal insulators from the phase diagram, Fig. 1. We predict
that the relevant topological behavior in simple cubic
Kondo insulators can only reside at the lower point group
symmetry X andM points in the Brillouin zone, leading to
three heavy Dirac cones at the surface. One of the addi-
tional consequences of the underlying Kondo physics is
that the coherence length of the surface states is expected
to be very small, of the order of a lattice spacing.

FIG. 1 (color online). Contrasting the phase diagram of
(a) tetragonal [27] and (b) cubic topological Kondo insulators.
Cubic symmetry extends the strong topological insulator phase
into the Kondo limit. For SmB6 v ¼ 3� nf gives the valence of

the Sm ion, while nf measures the number of f holes in the filled

4f6 state, so that nf ¼ 1 corresponds to the 4f5 configuration.
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While we outline our model of cubic Kondo insulators
with a particular focus on SmB6, the methodology general-
izes to other cubic Kondo insulators. SmB6 has a simple
cubic structure, with the B6 clusters located at the center of
the unit cell acting as spacers that mediate electron hop-
ping between Sm sites. Band theory [25] and XPS studies
[26] show that the 4f orbitals hybridize with d bands,
which form electron pockets around the X points. In a
cubic environment, the J ¼ 5=2 orbitals split into a �7

doublet and a �8 quartet, while the fivefold degenerate d
orbitals are split into double degenerate eg and triply

degenerate t2g orbitals. Band theory and Raman spectros-

copy studies [23] indicate that the physics of the 4f orbitals
is governed by valence fluctuations involving electrons of

the �8 quartet and the conduction eg states, e� þ
4f5ð�ð�Þ

8 Þ Ð 4f6. The �ð�Þ
8 (� ¼ 1, 2) quartet consists of

the following combination of orbitals: j�ð1Þ
8 i ¼

ffiffi

5
6

q

j � 5
2i þ

ffiffi

1
6

q

j � 3
2i; j�ð2Þ

8 i ¼ j � 1
2i. This then leads to a simple physi-

cal picture in which the �8 quartet of f states hybridizes
with an eg quartet (Kramers plus orbital degeneracy) of d

states to form a Kondo insulator.
To gain insight into how the cubic topological Kondo

insulator emerges, it is instructive to consider a simplified
one-dimensional model consisting of a quartet of
conduction d bands hybridized with a quartet of f bands
[Fig. 2(a)]. In one dimension there are two high symmetry
points, � (k ¼ 0) and X (k ¼ �), where the hybridization
vanishes [12,14,27]). Away from the zone center �, the
f� and d� quartets split into Kramers doublets. The Z2

topological invariant �1D is then determined by the product
of the parities �1D ¼ ���X of the occupied states at the �
and X points. However, the f quartet at the � point is
equivalent to two Kramers doublets, which means that
�� ¼ ð�1Þ2 is always positive, so that �1D ¼ �X and a
one-dimensional topological insulator only develops when
the f and d bands invert at the X point.

Generalizing this argument to three dimensions, we see
that there are now four high symmetry points �, X, M and
R. The f bands are fourfold degenerate at both � and R
points, which guarantees that �� ¼ �R ¼ þ1 [Fig. 2(b)].
Therefore, we see that the three-dimensional topological
invariant is determined by band inversions at X orM points
only, �3D ¼ ð�X�MÞ3 ¼ �X�M. If there is a band inversion
at the X point, we get �3D ¼ �X�M ¼ �1. In this way the
cubic character of the Kondo insulator and, specifically,
the fourfold degeneracy of the f-orbital multiplet protects
the formation of a strong topological insulator.
We now formulate our model for cubic topological

Kondo insulators. At each site, the quartet of f and d holes
is described by an orbital and spin index, denoted by the
combination � � ða; �Þ (a ¼ 1, 2, � ¼ �1). The fields
are then given by the eight-component spinor

�j ¼
d�ðjÞ
X0�ðjÞ

 !

; (1)

where d�ðjÞ destroys a d hole at site j, while X0�ðjÞ ¼
j4f6ih4f5; �j is the Hubbard operator that destroys an f
hole at site j. The tight-binding Hamiltonian describing the
hybridized f-d system is then

H ¼ X

i;j

�y
�ðiÞh��0 ðRi �RjÞ��0 ðjÞ; (2)

in which the nearest hopping matrix has the structure

hðRÞ ¼ hdðRÞ VðRÞ
VyðRÞ hfðRÞ

� �

; (3)

where the diagonal elements describe hopping within the d
and f quartets, while the off-diagonal parts describe the
hybridization between them and R 2 ð�x̂;�ŷ;�ẑÞ is the
vector linking nearest neighbors. The various matrix ele-
ments simplify for hopping along the z axis, where they
become orbitally and spin diagonal,

hlðzÞ ¼ tl
1

�l

� �

; VðzÞ ¼ i
V

2

0
�z

� �

; (4)

where l ¼ d, f and �l is the ratio of orbital hopping

elements. In the above, the overlap between the �ð1Þ
8 orbi-

tals, which extend perpendicular to the z axis, is neglected,
since the hybridization is dominated by the overlap of the

�ð2Þ
8 orbitals, which extend out along the z axis. The hop-

ping matrix elements in the x and y directions are then
obtained by rotations in orbital or spin space, so that

hðxÞ ¼ UyhðzÞUy
y and hðyÞ ¼ U�xhðzÞUy�x, where Uy

and U�x denote 90� rotations about the y and negative x
axes, respectively.
The Fourier transformed hopping matrices hðkÞ ¼

P

RhðRÞe�ik�R can then be written in the compact form

FIG. 2 (color online). Schematic band structure illustrating
(a) one-dimensional Kondo insulator with local cubic symmetry
and (b) three-dimensional cubic Kondo insulator. Hybridization
between a quartet of d bands with a quartet of f bands leads to a
Kondo insulator. The fourfold degeneracy of the f and d bands at
the high symmetry � and R points of the Brillouin zone guar-
anties that the three-dimensional topological invariant is deter-
mined by the band inversions at the X and M points only.
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hlðkÞ ¼ tl

2

�1ðkÞ þ �l�2ðkÞ ð1� �lÞ�3ðkÞ
ð1� �lÞ�3ðkÞ �2ðkÞ þ �l�1ðkÞ

� �

þ 	l;

(5)

where l ¼ d, f. Here 	l are the bare energies of the isolated
d and f quartets, while �1ðkÞ ¼ cx þ cy þ 4cz, �2ðkÞ ¼
3ðcx þ cyÞ, and�3ðkÞ ¼

ffiffiffi

3
p ðcx � cyÞ (c� cosk�, � ¼ x, y,

z). The hybridization is given by

VðkÞ ¼ V

4

�3ð ��x þ ��yÞ
ffiffiffi

3
p ð ��x � ��yÞ

ffiffiffi

3
p ð ��x � ��yÞ �ð ��y þ ��xÞ þ 4 ��zÞ

 !

; (6)

where we denote ��� ¼ �� sink�. Note how the hybridiza-
tion between the even parity d states and odd-parity f
states is an odd parity function of momentum
VðkÞ ¼ �Vð�kÞ.

To analyze the properties of the Kondo insulator, we use
a slave boson formulation of the Hubbard operators, writ-

ing X�0ðjÞ ¼ fy�ðjÞbj, where fy� j0i � j4f5; �i creates an f

hole in the �8 quartet, while byj0i � j4f6i denotes the

singlet filled 4f shell, subject to the constraint Qj ¼
byj bj þ

P

�f
y
j�fj� ¼ 1 at each site.

We now analyze the properties of the cubic Kondo
insulator, using a mean-field treatment of the slave boson

field bi, replacing the slave-boson operator b̂i at each site

by its expectation value hb̂ii ¼ b so that the f-hopping and
hybridization amplitude are renormalized, tf ! b2tf and

Vdf ! bVdf. The mean-field theory is carried out, enforc-

ing the constraint b2 þ hnfi ¼ 1 on the average. In addi-

tion, the chemical potentials 	d and "f for both d electrons

and f holes are adjusted self-consistently to produce a band
insulator, nd þ nf ¼ 4. This condition guarantees that four

out of eight doubly degenerate bands will be fully occu-
pied. The details of our mean-field calculation are given in
the Supplemental Material [28] section. Here we provide
the final results of our calculations.

In Fig. 3 we show that the magnitude b reduces with
temperature, corresponding to a gradual rise in the Sm
valence, due to the weaker renormalization of the
f-electron level. The degree of mixed valence of Smþ is
given then by v ¼ 3� hnfi. In our simplified mean-field

calculation, the smooth temperature crossover from Kondo
insulating behavior to local moment metal at high tem-
peratures is crudely approximated by an abrupt second-
order phase transition.
Figure 4 shows the computed band structure for the

cubic Kondo insulator obtained from mean-field theory,
showing the band inversion between the d and f bands at
the X points that generates the strong topological insulator.
Moreover, as the value of the bare hybridization increases,
there is a maximum value beyond which the bands no
longer invert and the Kondo insulator becomes a conven-
tional band insulator.
One of the interesting questions raised by this work

concerns the many-body character of the Dirac electrons
on the surface. Like the low-lying excitations in the va-
lence and conduction band, the surface states of a TKI
involve heavy quasiparticles of predominantly f character.
The characteristic Fermi velocity of these excitations
v�
F ¼ ZvF is renormalized with respect to the conduction

electron band group velocities, where Z ¼ m=m� is the
mass renormalization of the f electrons. In a band topo-
logical insulator, the penetration depth of the surface state
is 
� vF=�, where � is the band gap, a scale that is
significantly larger than a unit-cell size. Paradoxically,
even though the Fermi velocity of the Dirac cones in a
TKI is very low, we expect the characteristic penetration
depth 
 of the heavy wave functions into the bulk to be of
order the lattice spacing a. To see this, we note that 
�
ðv�

F=�gÞ, where the indirect gap of the Kondo insulator �g

is of order the Kondo temperature �g � TK. But since

FIG. 3 (color online). Temperature dependence of the hybrid-
ization gap parameter b and the renormalized f-level position
(inset) for various values of the bare hybridization (see
Supplemental Material [28] for more details).

FIG. 4 (color online). Band structure consistent with PES and
LDA studies of SmB6 computed with the following parameters:
nf ¼ 0:48 (or b ¼ 0:73), V ¼ 0:4 eV,td ¼ 2 eV, �d ¼ 0:2 eV,

� ¼ �0 ¼ �:3, 	f ¼ �0:01 eV (	f0 ¼ �0:17 eV), tf ¼
�:05 eV, T ¼ 10�4 eV, and the gap is � ¼ 12 meV. Shaded
region denotes filled bands. Inset shows the ground-state energy
computed for a slab of 80 layers to illustrate the three gapless
surface Dirac excitations at the symmetry points �̂, X̂0, and X00.
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TK � ZW, whereW is the width of the conduction electron
band, this implies that the penetration depth of the surface
excitations 
� vF=W � a is given by the size a of the unit
cell. Physically, we can interpret the surface Dirac cones as
a result of broken Kondo singlets, whose spatial extent is of
order a lattice spacing. This feature is likely to make the
surface states rather robust against the purity of the bulk.

Various interesting questions are raised by our study.
Conventional Kondo insulators are most naturally under-
stood in the strong-coupling limit of the Kondo lattice,
where local singlets form between a commensurate num-
ber of conduction electrons and localized moments. What
then is the appropriate strong coupling description of to-
pological Kondo insulators, and can we understand the
surface states in terms of broken Kondo singlets? A second
question concerns the temperature dependence of the hy-
bridization gap. Experimentally, the hybridization gap
observed in Raman and transport studies [23,29] is seen
to develop in a fashion strongly reminiscent of the mean-
field theory. Could this close resemblance to the mean-field
theory indicate that fluctuations about mean-field theory
are weaker in a fully gapped Kondo lattice than in its
metallic counterpart?

To summarize, we have studied the cubic topological
Kondo insulator, incorporating the effect of a fourfold
degenerate f multiplet. There are two main effects of the
quartet states: first, that the quarter filling of the quartet
allows the fractional filling of the band favorable to strong
topological insulating behavior to occur in the almost
integral valent environment of the Kondo insulator and,
second, that doubling the degeneracy of the band states at
the high-symmetry � and R points in the Brillouin zone, so
that their net parity is always positive, effectively removes
these points from the calculation of the Z2 topological
invariant so that the only important crossing must take
place at the X or M points. For the cubic topological
Kondo insulators, this immediately leads to a prediction
that three heavy Dirac cones will form on the surfaces
[13,16].
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Note added.—After the submission of this Letter, several
groups [30–33] have reported angular-resolved photoemis-
sion spectroscopy (ARPES) results that support the pres-
ence of surface states predicted by this and earlier papers
[13,16]. In addition, torque magnetometry measurements
[34] have observed de Haas–van Alphen oscillations asso-
ciated with the surface states of SmB6 that are consistent
with a two-dimensional Dirac spectrum. The masses of the

excitations seen in both sets of experiments are, however,
significantly smaller than expected in the current theory.
Lastly, experimental observations of weak antilocalization
signatures in conductivity [35] as well as induced localiza-
tion of the metallic surface states with an addition of
magnetic impurities [36] provide strong circumstantial
evidence that the surface quasiparticles are spin polarized,
as expected in a topological insulator.
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