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Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic

algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode

creation operator is highly nonlinear in the original effective mode operators, and therefore also in the

underlying electron creation and destruction operators. This phenomenon could open up new possibilities

for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the

Pfaffian quantum Hall state.
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Introduction.—The existence of Majorana modes in con-
densed matter systems [1–6] is intrinsically interesting, in
that it embodies a qualitatively new and deeply quantum
mechanical phenomenon [7,8]. It is also possible that such
modes might have useful applications, particularly in
quantum information processing [9,10]. One feature that
makes Majorana modes useful is that they generate a
doubled spectrum. Repeated doubling generates a huge
Hilbert space of degenerate states, which is the starting
point for possible quantum computational applications. In
this Letter, we explore the precise algebraic structure
underlying that degeneracy.

Consider the situation where multiple Majorana modes
come together to form a junction, as might occur in a
network of superconducting wires that support a nontrivial
topological phase. Several experimental groups are devel-
oping physical embodiments of Majorana modes, for even-
tual use in such complex quantum circuits. (For a useful
sampling of very recent activity, see the collection of
abstracts from Erice workshop [11].) We consider a fun-
damental issue that arises in analyzing such circuits. For
each odd junction of a circuit, we identify a remarkably
simple, explicit nonlinear operator � that implements the
doubling. We point out interesting algebraic properties of �
and emphasize its tight connection with fermion parity. We
find these results, in their power and simplicity, encourag-
ing for further developments of technology usingMajorana
wire circuits. In particular, it should be possible, by sys-
tematically incorporating the effects of a very broad class
of interactions, to put the analysis of mode transport
through trijunctions and Josephson couplings on a more
general and rigorous footing.

Review of Kitaev’s wire model.—Let us briefly recall the
simplest, yet representative, model for such modes, Kitaev’s
wire segment [12]. We imagineN ordered sites are available
to our electrons, so we have creation and destruction opera-

tors ayj , ak, 1 � j, k � N, with faj; akg ¼ fayj ; ayk g ¼ 0 and

fayj ; akg ¼ �jk. The same commutation relations can be

expressed using the Hermitian and anti-Hermitian parts of
the aj, leading to a Clifford algebra, as follows:

�2j�1 ¼ aj þ ayj ; �2j ¼
aj � ayj

i
; f�k;�lg ¼ 2�kl:

(1)

Now let us compare the Hamiltonians

H0 ¼ �i
XN

j¼1

�2j�1�2j; (2)

H1 ¼ �i
XN�1

j¼1

�2j�2jþ1: (3)

Since �i�2j�1�2j ¼ 2ayj aj � 1, H0 simply measures the

total occupancy. It is a normal, if unusually trivial, electron
Hamiltonian.
H1 strongly resembles H0, but there are three major

differences. One difference emerges if we reexpress H1

in terms of the aj. We find that it is local in terms of those

variables, in the sense that only neighboring sites are
connected, but that in addition to conventional hopping

terms of the type aja
y
jþ1, we have terms of the type ajajþ1,

and their Hermitian conjugates. The aa type, which we
may call superconductive hopping, does not conserve elec-
tron number, and is characteristic of a superconducting
(pairing) state. A second difference grows out of a simi-
larity: since the algebra Eq. (1) of the �j is uniform in j, we

can interpret the products �2j�2jþ1 that appear inH1 in the

same fashion that we interpret the products �2j�1�2j that

appear in H0, that is, as occupancy numbers. The effective
fermions that appear in these numbers, however, are not the
original electrons, but mixtures of electrons and holes on
neighboring sites.
The third and most profound difference is that the op-

erators �1, �2N do not appear at all in H1. These are the
Majorana mode operators. They commute with the
Hamiltonian, square to the identity, and anticommute
with each other. The action of �1 and �2N on the ground
state implies a degeneracy of that state, and the corre-
sponding modes have zero energy. Kitaev [12] shows that
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similar behavior occurs for a family of Hamiltonians
allowing continuous variation of microscopic parameters,
i.e., for a universality class. Within that universality class
one has Hermitian operators bL, bR on the two ends of the
wire whose action is exponentially (in N) localized and
commute with the Hamiltonian up to exponentially small
corrections, that satisfy the characteristic relations b2L ¼
b2R ¼ 1. In principle, there is a correction Hamiltonian,

Hc / �ibLbR; (4)

that will encourage us to reassemble bL, bR into an effec-
tive fermion creation-destruction pair and realize Hc as its
occupation number. But for a long wire and weak inter-
actions, we expect the coefficient of Hc to be very small,
since the modes excited by bL, bR are spatially distant, and
for most physical purposes it will be more appropriate to
work with the local variables bL, bR.

Algebraic structure.—The following considerations will
appear more pointed if we explain their origin in the
following little puzzle. Let us imagine we bring together
the ends of three wires supporting Majorana modes b1, b2,
b3. Thus we have the algebra

fbj; bkg ¼ 2�jk: (5)

The bj do not appear in their separate wire Hamiltonians,

but we can expect to have interactions

Hint ¼ �ið�b1b2 þ �b2b3 þ �b3b1Þ; (6)

which plausibly arise from normal or superconductive
interwire electron hopping. We assume here that the only
important couplings among the wires involve the Majorana
modes. This is appropriate if the remaining modes are
gapped and the interaction is weak—for example, if we
only include effects of resonant tunneling. We shall relax
this assumption in due course.

We might expect, heuristically, that the interactions
cause two Majorana degrees of freedom to pair up to
form a conventional fermion degree of freedom, leaving
one Majorana mode behind.

On the other hand, the algebra in Eq. (5) can be realized
using Pauli � matrices, in the form bj ¼ �j. In that real-

ization, we have simply H ¼ ��3 þ ��1 þ ��2. But that

Hamiltonian has eigenvalues � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j2 þ j�j2 þ j�j2p
, with

neither degeneracy nor zero mode. In fact, a similar prob-
lem arises even for ‘‘junctions’’ containing a single wire,
since we could use bR ¼ �1 (and bL ¼ �2).

The point is that the algebra of Eq. (5) is conceptually
incomplete. It does not incorporate relevant implications of
electron number parity, or in other words, electron number
modulo 2. For the operator

P � ð�1ÞNe ; (7)

that implements electron number parity, we should have

P2 ¼ 1; (8)

½P;Heff� ¼ 0; (9)

fP; bjg ¼ 0: (10)

Equation (8) follows directly from the motivating defini-
tion. Equation (9) reflects the fundamental constraint that
electron numbermodulo 2 is conserved in the theories under
consideration, and indeed under very broad—possibly
universal—conditions. Equation (10) reflects, in the context

of [12], that the bj are linear functions of the ak, a
y
l , but is

more general. Indeed, it will persist under any ‘‘dressing’’ of
the bj operators induced by interactions that conserve P.

Below we will see striking examples of this persistence.
The preceding puzzle can now be addressed. Including

the algebra of electron parity operator, we take a concrete
realization of operators as b1 ¼ �1 � I, b2 ¼ �3 � I,
b3 ¼ �2 � �1, and P ¼ �2 � �3. This choice represents
the algebra Eqs. (5) and (8)–(10). The Hamiltonian repre-
sented in this enlarged space contains doublets at each
energy level. (Related algebraic structures are implicit
in [13]. See also [14–17] for more intricate, but model-
dependent, constructions.)
Emergent Majorana modes.—Returning to the abstract

analysis, consider the special operator

� � �ib1b2b3: (11)

It satisfies

�2 ¼ 1; (12)

½�; bj� ¼ 0; (13)

½�; Heff� ¼ 0; (14)

f�; Pg ¼ 0: (15)

Equations (12) and (13) follow directly from the definition,
while Eq. (14) follows, given Eq. (13), from the require-
ment that Heff should contain only terms of even degree in
the bis. That requirement, in turn, follows from the restric-
tion of the Hamiltonian to terms even under P. Finally,
Eq. (15) is a direct consequence of Eq. (10) and the
definition of �.
This emergent � has the characteristic properties of a

Majorana mode operator: It is Hermitian, squares to one,
and has odd electron number parity. Most crucially, it
commutes with the Hamiltonian, but is not a function of
the Hamiltonian. We can highlight the relevant structure by
going to a basis where H and P are both diagonal. Then
from Eq. (15) we see that � takes states with P ¼ �1 into
states of the same energy with P ¼ �1. This doubling
applies to all energy eigenstates, not only the ground state.
It is reminiscent of, but differs from, Kramers doubling.
(No antiunitary operation appears, nor is T symmetry
assumed.)
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One also has a linear operator

w � �b3 þ �b1 þ �b2 (16)

that commutes with the Hamiltonian. However, it is not
independent of �, since we have

w ¼ H�: (17)

The same considerations apply to a junction supporting
any odd number p of Majorana mode operators, with

� � ipðp�1Þ=2 Y
p

j¼1

�j: (18)

For even p, however, we get a commutator instead of an
anticommutator in Eq. (15), and the doubling construction
fails. For odd p � 5 generally there is no linear operator,
analogous to the w of Eq. (16) that commutes with H.
[If the Hamiltonian is quadratic, the existence of a linear
zero mode follows from simple linear algebra—namely,
the existence of a zero eigenvalue of an odd-dimensional
antisymmetric matrix, as discussed in earlier analyses.
But for more complex, realistic Hamiltonians, including
nearby electron modes as envisaged below, that argument
is insufficient, even for p ¼ 3. The emergent operator �,
on the other hand, always commutes with the Hamiltonian
[Eq. (14)], even allowing for higher order contributions
such as quartic or higher polynomials in the bis.]

Now let us revisit the approximation of keeping only the
interactions of the Majorana modes from the separate
wires. We can in fact, without difficulty, include any finite
number of ‘‘ordinary’’ creation-annihilation modes from
each wire, thus including all degrees of freedom that over-
lap significantly with the junction under consideration.
These can be analyzed, as in Eq. (1), into an even number
of additional � operators, to include with the odd number
of bj. But then the product �0 of all these operators,

including both types (and the appropriate power of i),
retains the good properties Eq. (12) of the � operator we
had before.

Now let us briefly discuss how � resolves the puzzle in
the previous section. If p � 5, or even at p ¼ 3 with
nearby electron interactions included, the emergent zero
mode is a highly nonlinear entangled state involving all the
wires that participate at the junction. The robustness of
these conclusions results from the algebraic properties of �
we identified.

Pfaffian vortices.—It is interesting to compare the
answer to a similar question in another physical context
where Majorana modes arise [4], that is, fractional
quantum Hall effects of the Pfaffian type. Following the
notation and framework of [18], appropriate wave func-
tions for the state with four quasiparticles at positions a, b,
c, d can be constructed in the form

�1ðzj; a; b; c; dÞ

¼ Pf
ðzj � aÞðzj � bÞðzk � cÞðzk � dÞ þ ðj$ kÞ

zj � zk
�0ðzjÞ;

�2ðzj; a; b; c; dÞ

¼ Pf
ðzj � aÞðzj � cÞðzk � bÞðzk � dÞ þ ðj$ kÞ

zj � zk
�0ðzjÞ;

�3ðzj; a; b; c; dÞ

¼ Pf
ðzj � aÞðzj � dÞðzk � bÞðzk � cÞ þ ðj$ kÞ

zj � zk
�0ðzjÞ;

(19)

where Pf denotes the Pfaffian and�0 contains the standard
Laughlin-Landau factors for filling fraction 1=2. Within
the Pfaffian each quasiparticle acts on one member of a
pair, and in each of �1, �2, �3 the quasiparticles them-
selves are paired off, so that each quasiparticle acts on the
same electrons as its mate. In �1 ab and cd are paired
in this sense, and so forth. It can be shown, by direct
calculation, that �1, �2, �3 do not represent three inde-
pendent states, since there is a (a, b, c, d-dependent) linear
relation among them. Two physical states remain. This is
the number required by a minimal implementation of
the non-Abelian statistics, which can be based on the
Clifford algebra with four generators [19].
Now formally we can take one of the quasiparticles off

to infinity, and arrive at corresponding wave functions for
three quasiparticles [20]:

~�1ðzj; a; b; cÞ

¼ Pf
ðzj � aÞðzj � bÞðzk � cÞ þ ðj $ kÞ

zj � zk
�0ðzjÞ;

~�2ðzj; a; b; cÞ

¼ Pf
ðzj � aÞðzj � cÞðzk � bÞ þ ðj $ kÞ

zj � zk
�0ðzjÞ;

~�3ðzj; a; b; cÞ

¼ Pf
ðzj � aÞðzk � bÞðzk � cÞ þ ðj $ kÞ

zj � zk
�0ðzjÞ:

(20)

We find that there is no further reduction, so there is a
two-dimensional space of states spanned by these wave
functions, as required for a minimal (nontrivial) represen-
tation of the Clifford algebra with three generators. In this
context, then, it appears that the minimal spinor represen-
tation always suffices: no analogue of the electron parity
operator is implemented.
We conclude with the following comments.
(1) The algebraic structure defined by Eqs. (8)–(10) is

fully nonperturbative. It may be taken as the definition of
the universality class supporting Majorana modes. The
construction of � (in its most general form) and its
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consequences [Eqs. (12)–(15)] reproduce that structure,
allowing for additional interactions, with � playing the
role of an emergent b. The definition of �, the consequen-
ces Eqs. (12)–(15), and the deduction of doubling are
likewise fully nonperturbative.

(2) If we have a circuit with several junctions j, the
emergent �j will obey the Clifford algebra

f�j;�kg ¼ 2�jk: (21)

This applies also to junctions with p ¼ 1, i.e., simple
terminals, and the circuit does not need to be connected.

(3) � is at the opposite extreme from a single-particle
operator. The corresponding mode is associated with the
product wave function over the modes associated with
the bj. In this sense we have extreme valence-bond

(Heitler-London) as opposed to linear (Mulliken) orbitals.
The contrast is especially marked, of course, for large p.

(4) The fact that interactions modify the Majorana
modes in such a simply analyzed, yet highly nontrivial,
fashion suggests new possibilities for circuit operations,
which merit much further consideration.

(5) A Clifford algebra on an even number of generators
that commute with the Hamiltonian can be reorganized, by
inverting the procedure of Eq. (1), into a supersymmetry
algebra. Thus, our constructions support an emergent su-
persymmetry. This supersymmetry algebra commutes with
the Hamiltonian, but does not contain it. (Compare [21],
where an emergent supersymmetry, relying on T symme-
try, has been discussed in the context of Majorana modes.)

(6) One can modify the preceding construction by using,
in place of the �j matrices, matrices of the type

~� j /
ffiffiffiffiffi
H

p
�j (22)

to achieve a closed supersymmetry algebra, now including
the Hamiltonian in the anticommutators. One could also
consider more elaborate construction, in which pieces of
the total Hamiltonian are assigned to different �j, exploit-

ing locality conditions among the underlying a operators to

insure appropriate anticommutators. Of course the
ffiffiffiffiffi
H

p

operators themselves will not be local, except for specially
crafted H.
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