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One-dimensional (1D) quasicrystals exhibit physical phenomena associated with the 2D integer

quantum Hall effect. Here, we transcend dimensions and show that a previously inaccessible phase of

matter—the 4D integer quantum Hall effect—can be incorporated in a 2D quasicrystal. Correspondingly,

our 2D model has a quantized charge-pump accommodated by an elaborate edge phenomena with

protected level crossings. We propose experiments to observe these 4D phenomena, and generalize our

results to a plethora of topologically equivalent quasicrystals. Thus, 2D quasicrystals may pave the way to

the experimental study of 4D physics.
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The uprising field of topological phases of matter deals
with systems of arbitrary dimension [1,2]. In this para-
digm, each energy gap of a system is attributed an index,
which is robust to continuous deformations. A nontrivial
index is usually associated with interesting boundary phe-
nomena, quantized response, and exotic quasiparticles.
While nontrivial topological phases appear in any dimen-
sion [3,4], the physical manifestations are limited to 1D
[5,6], 2D [7,8], and 3D [9].

An example of an intriguing topological phase, which is
seemingly out of reach, is the 4D generalization of the 2D
integer quantum Hall effect (IQHE). In 2D, a uniform
magnetic field creates Landau levels that are characterized
by the 1st Chern number (1CN)—the topological index
that corresponds to the quantized Hall conductance
[10,11]. In 4D, a uniform SU(2) Yang-Mills field results
in generalized Landau levels [12,13]. These levels are
characterized by the 2nd Chern number (2CN)—a topo-
logical index which corresponds to a quantized nonlinear
response [13,14]. Both the 2D and 4D IQHEs exhibit a
variety of exotic strongly correlated phases when interac-
tions are included [13,15]. Hence, the 4D IQHE, as well as
lattice models with nonvanishing 2CNs, constantly attract
theoretical attention [14,16], such as the recently found
rich metal-insulator phase diagram [17].

The physical properties of quasicrystals (QCs)—
nonperiodic structures with long-range order—can
oftentimes be derived from periodic models of higher
dimensions [18,19]. Using a novel dimensional extension,
it was recently shown that 1D QCs exhibit topological
properties of the 2D IQHE [20]. The bulk energy spectrum
of these 1D QCs is gapped, and each gap is associated
with a nontrivial 1CN. This association relies on the fact
that the long-range order harbors an additional degree of
freedom in the form of a shift of the quasiperiodic order.
Accordingly, boundary states traverse the gaps as a func-
tion of this shift. This property was observed in photonic

QCs, and was utilized for an adiabatic pump of light [20].
Moreover, upon a deformation between QCs with different
1CNs, the expected phase transition was experimentally
observed [21]. Generalizations to other 1D symmetry
classes, physical implementations, and QCs were dis-
cussed [22–25].
In this Letter, we take a major step further, and present a

2D quasiperiodic model that exhibits topological proper-
ties of the 4D IQHE. Each gap in its energy spectrum is
characterized by a nontrivial 2CN, which implies quantum
phase transitions between topologically distinct models.
Furthermore, scanning of the shift parameters is accom-
panied by (i) quantized charge pumping with an underlying
4D symmetry and (ii) gap-traversing edge states with
protected level crossings. Generalizations to other models
and 2D QCs are discussed. We propose two experiments to
measure the 2CN via charge pumping, and, thus, make 4D
physics experimentally accessible.
We study a 2D tight-binding model of particles that hop

on a square lattice in the presence of a modulated on-site
potential

Hð�x;�yÞ ¼
X
x;y

X
�¼�

cyx;y;�½txcxþ1;y;� þ tycx;yþ1;� þ H:c:

þ ð�x cosð�2�bxxþ�xÞ
þ �y cosð�2�byyþ�yÞÞcx;y;��: (1)

Here, � ¼ � is an internal degree of freedom such as
spin- 12 , photonic polarization, or atomic orbital, cx;y;� is

the single-particle annihilation operator of a particle at site
(x, y) in state �; tx, ty are the hopping amplitudes in the x

and y directions; and �x, �y are the amplitudes of the on-

site potentials, which are modulated along x and y with
modulation frequencies bx, by, respectively [cf. Fig. 1(a)].

Last, the Hamiltonian depends on two shift parameters �x

and �y. We assume the modulation frequencies bx and by
to be irrational, which makes the on-site modulations
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incommensurate with the lattice, and the model becomes
quasiperiodic.

The spectrum ofH is gapped, and therefore, may exhibit
nontrivial topological indices. Conventionally, the only
apparent topological index that can be associated with H
is the 1CN [3,4]. However, sinceHð�x ¼ �y ¼ 0Þ is time-

reversal symmetric, its 1CN vanishes, and H is seemingly
trivial.

Strikingly, H is attributed a nontrivial 2CN, which, by
definition, characterizes 4D systems. In order to obtain this
result, let us consider H on a toroidal geometry [26]. We
introduce twisted boundary conditions along the x and y
directions, parametrized by �x and �y, respectively. For a

given gap and given �� � ð�x;�y; �x; �yÞ, we denote by

Pð��Þ the projection matrix on all the eigenstates of

Hð��Þ with energies below this gap. We can now define,

C ð��Þ ¼
X

��	


���	


�8�2
Tr

�
P

@P

@��

@

@��

P
@P

@�	

@P

@�


�
; (2)

where ���	
 is the antisymmetric tensor of rank 4.

Formally, the 2CN is defined by V ¼ R
d4��Cð��Þ

[27]. By its definition, V characterizes a 4D family of
Hamiltonians composed of all Hð��Þ with all possible

values of��; i.e.,�x and�y act as two additional effective

dimensions. The main result of this Letter is that even for a
given ��, the gaps of Hð��Þ can be associated with a

nontrivial integer 2CN,

V ¼ ð2�Þ4Cð��Þ � 0; (3)

in the thermodynamic limit. Below, we justify Eq. (3) by
showing that, for our model, Cð��Þ is essentially indepen-

dent of ��, and thus, the integration over the four parame-

ters is redundant.
Beforehand, we present the physical implications of

the nontrivial V . To do so, we apply to H the proce-
dure of dimensional extension that was introduced in
Refs. [20,23]. In this procedure, we interpret �x and �y

as momenta along two fictitious perpendicular coordinates
w and z, respectively. Now, the HamiltonianHð�x;�yÞ is a
single Fourier component of some ancestor 4D
HamiltonianH . By making the inverse Fourier transform,
we obtain a Hamiltonian describing spin- 12 particles hop-

ping on a 4D hypercubic lattice

H ¼ X
x;�̂

cyxei2�a�̂ðxÞt�̂cxþ�̂ þ H:c:; (4)

where cx ¼ ðcx;þ; cx;�Þ annihilates a spin- 12 particle at site
x ¼ ðx; y; z; wÞ, �̂ is summed over the unit vectors x̂, ŷ, ẑ,
and ŵ, which connect nearest neighbors, and t�̂ ¼
ðtx; ty; �x=2; �y=2Þ. These particles are coupled to a

Yang-Mills gauge field a�̂ðxÞ ¼ ðbyyẑþ bxxŵÞ�3. This

vector potential describes a spin-polarized uniform SU(2)
field. Such a field is known to generate a 4D IQHE with a
nontrivial V [12,13]. Notably, H is defined on a planar
geometry in a Landau gauge, whereas previous analyses
treated a spherical geometry in a symmetric gauge.
Similar to the 2D IQHE,V has a physical manifestation

in the form of a response function. Here the response is
quantized but nonlinear: j� ¼ V ðe2=h�0Þ���	
B�	E


[14], where j� denotes the current density along the �
direction, �0 is the flux quantum, E
 is an electric field
along the 
 direction, and B�	 is a magnetic field in the �	

plane.
A direct observation of this response requires a 4D

system. However, we can develop an analogue of
Laughlin’s pumping, which is manifested in the 2D model.
Let us consider the following two cases: jx ¼
V ðe2=h�0ÞByzEw and jx ¼ V ðe2=h�0ÞBwyEz. Recall

that the electric fields can be generated by time-dependent
Aharonov-Bohm fluxes, Ew ¼ ð1=caNwÞ@t�wðtÞ and
Ez ¼ ð1=caNzÞ@t�zðtÞ, where a is the lattice spacing,
and Nw and Nz are the number of lattice sites along the
w and z directions, respectively. Expressing Byz and Bwy in

H in Landau gauge, and performing dimensional

FIG. 1 (color online). (a) An illustration of H [cf. Eq. (1)]: a
2D square lattice with a cosine-modulated on-site potential. The
potential is incommensurate with the lattice, and is � dependent.
The state � ¼ þ experiences the upper (blue) potential, and
� ¼ � experiences the lower (red). For clarity, the potentials are
vertically displaced. The dots mark the underlying lattice sites.
(b)–(d) A quantized charge pumping along the x direction is
achieved by scanning the shift parameters �x and �y in the

presence of the modulation modifications �Byz and �Bwy, respec-

tively [cf. Eqs. (5) and (7)]. The effects on the potentials of
� ¼ þ (blue) and � ¼ � (red) is illustrated [the thin (gray) line
denotes the unmodified reference potential]: (b) �x (or, equiv-
alently, �y) shifts the cosine potentials in opposite directions for

opposite �. (c) �Byz makes the modulation frequency become �

dependent by þ � �Byz. (d) �Bwy shifts the cosine potentials in

opposite directions, but with an increasing shift along the y
direction.
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reduction, these fields enter the 2D model, H, through
modified on-site terms,

�x cos½2�ð�bxxþ �BwyyÞ þ�xðtÞ�
þ �y cos½2�ð�by þ �ByzÞyþ�yðtÞ�; (5)

where �xðtÞ ¼ ð2�=Nw�0Þ�wðtÞ and �yðtÞ ¼ ð2�=
Nz�0Þ�zðtÞ, and �Bwy ¼ Bwya

2=�0 and �Byz ¼ Byza
2=�0

denote the corresponding flux quanta per plaquette.
Figures 1(b)–1(d) illustrate the effects of these modifica-
tions. By fixing the chemical potential within a gap with a
given V , an adiabatic scan of �x or of �y from 0 to 2�

pumps charge along the x direction, such that

Qx ¼ V e �ByzNy; (6a)

Qx ¼ V e �BwyNy; (6b)

respectively, where Ny is the number of lattice sites along

the y direction.
We can now propose experiments that measureV using

Eq. (7). Take a 2D slab of our model, and connect metal
leads to the edges of the x coordinate. Let us assume that
the chemical potential of both the system and the leads is
placed in some gap of H. Then, one should measure the
charge-flow during the scan of �x from 0 to 2� for differ-
ent values of �Byz [28]. According to Eq. (6a), we expect

that V ¼ ð1=eLyÞ@Qx=@ �Byz. Similarly, according to

Eq. (6b) during the scan of �y while varying �Bwy, charge

flows and V ¼ ð1=eLyÞ@Qx=@ �Bwy. Remarkably, due to

the 4D origin of our model, the measured V would be
the same in both experiments. A similar experiment can be
conducted in a photonic system [29].

We have just seen that upon a scan of �x, charge may
flow in the x direction. Consequently, for an open geome-
try, in order to accommodate this charge transfer, edge
states must appear and traverse the gaps as a function of
�x. These states appear for infinitesimally small �Byz and,

hence, appear also for �Byz ¼ 0. Figure 2 depicts the nu-

merically obtained energy spectrum of H as a function of
�x, for an open x coordinate, a periodic y coordinate, tx ¼
ty ¼ 1, �x ¼ �y ¼ 1:8, Nx ¼ Ny ¼ 34, bx ¼ ð1þ ffiffiffi

5
p Þ=2,

and by ¼ 55=34 � ð1þ ffiffiffi
5

p Þ=2 [26]. The spectrum is in-

variant with respect to�y, and is depicted for�y ¼ 0. As a

function of �x, the spectrum has flat bands and gap-
traversing bands. The flat bands correspond to bulk states,
whereas the gap-traversing ones to edge states (see insets).
The edge states are divided into four types: � ¼ þ and
� ¼ � (blue and red), which are localized at either the left
or right edge (opposite slopes). These edge states are a
signature of the nontrivial V of our model. They can be
measured in a way similar to the experiments performed in
1D photonic QCs [20,29].

Naively, opposite-� modes that reside on the same edge
can be gapped out by introducing �-mixing terms.
However, this is not the case, and the edge modes and their

crossings are topologically protected. In order to establish
this protection, we decompose H into its � and spatial
constituents. The Hamiltonian H is a sum of two � com-
ponents, where each � component is subject to two
decoupled 1D Harper models along the x and y directions.
Both � components experience the same modulation fre-
quencies, bx and by, but couple to the shift parameters, �x

and �y, with an opposite sign. Therefore, each eigenstate

of Hð�x;�yÞ is a product of eigenstates of the Harper

models in the x and y directions and an eigenstate of �.
Recall that each gap of the Harper model is associated

with a nontrivial 1CN, which corresponds to the number of
boundary states that traverse the gap as a function of �
[10,11,20]. Accordingly, each band of the Harper models
in the x and y directions is associated with some
�-dependent 1CN, �rx;� and �ry;�, where rx and ry denote

the corresponding bands, respectively, [30]. In Fig. 2, the
bands that traverse the gaps as a function of �x are com-
posed of products of bulk bands in the y direction and
boundary states in the x direction. Notably, due to the
opposite coupling of � to �x and �y, �rx;� ¼ ��rx;þ
and �ry;� ¼ ��ry;þ. Therefore, the gaps are traversed by

the same number of � ¼ � bands, but with opposite
slopes. Since opposite-� bands are associated with oppo-
site 1CNs, they cannot be gapped out by �-mixing terms,
even if they cross at some value of �x. Otherwise, �ry;�

would change continuously as a function of �x between
�ry;þ and �ry;�. The level crossing is, therefore, protected.

The described edge phenomena accounts for the charge
pumping described above. When �x or �y are scanned,

FIG. 2 (color online). The spectrum of H as a function of the
shift parameter �x [cf. Eq. (1)], for an open x coordinate and a
periodic y coordinate. The horizontal bands correspond to bulk
states. The gap-traversing states with � ¼ þ (blue) or � ¼ �
(red) are edge states, which are localized at the left or right edges
(see insets for typical wave functions). The crossings of edge
states are topologically protected. The values of the 2nd Chern
number, V , associated with the large gaps are presented.
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opposite-� states, which have opposite 1CNs, flow in
opposite directions. In the absence of �Byz and �Bwy, the

two charge currents cancel. Applying �Byz or �Bwy causes a

difference between the densities of the � states, and thus, a
net charge is pumped [14,31]. Remarkably, for a spin- 12
realization, our model can serve as a spin pump across the
sample, since for recursive scans of �x, macroscopic spins
accumulate at the boundaries, even for vanishing �Byz

and �Bwy.

We turn, now, to establish Eq. (3). Let us
evoke the definition of the 1CN of a band of the
Harper model in the x direction with a given �,
�rx;� ¼ R

d�xd�xCrx;�ð�x; �xÞ, where Crx;�ð�x; �xÞ ¼
ð1=2�iÞTrðPrx;�½@�x

Prx;�; @�xPrx;��Þ, and Prx;�ð�x; �xÞ is

the projection matrix on the eigenstates of the rxth
band [27]. A similar definition applies for �ry;�. Let us

denote by �nð�Þ the eigenenergies of the Harper model.
The decomposition ofH into x and y constituents makes its
energy spectrum a Minkowski sum, Enx;ny;�ð�x;�yÞ ¼
�nxð��xÞ þ �nyð��yÞ. Accordingly, the states below

each gap of Enx;ny;� can be decomposed into a sum over

pairs of bands in the 1D spectra, rx and ry, such that �rx þ
�ry < �, where � is the energy in the middle of the gap.

Using the fact that the eigenfunctions ofH are a product of
the 1D eigenfunctions, we obtain [29]

V ¼ X
�¼�

X
ð�rxþ�ry<�Þ

�rx;��ry;� � 0: (7)

In a previous work [20], we have shown that, in the
thermodynamic limit, Cr;�ð�; �Þ becomes independent of

� and �. Hence, �r;� ¼ ð2�Þ2Cr;�ð�; �Þ. This, combined

with Eq. (5), immediately implies Eq. (3) [29].
Until now, our analysis used the decomposition ofH into

�, x, and y components. In fact, any SUð2Þ � Uð1Þ gauge
transformation in the 4D Hamiltonian H that respects
Landau gauge keeps the system unchanged. After the
dimensional reduction to 2D, such a transformation
becomes a general local transformation that may mix x,
y, and �, but keeps V unchanged. More generally, any
unitary transformation of the 2D Hamiltonian that does not
depend on �� keeps Cð��Þ independent of ��. One can

also show that the symmetry of H to spin flip is unneces-
sary [29]. Additionally, in the presence of uncorrelated
disorder that does not close the bulk gap, V remains the
same, similar to the 1D case [20].

The predicted 2CN is not limited to a 2D model com-
posed of two Harper models. One can consider (i) placing
the cosine modulations in the hopping terms, rather than in
the on-site terms (off-diagonal Harper), and (ii) replacing
each of the cosine modulations with a Fibonacci-like
modulation. Combining (i) and (ii) leads to a well-known
2D QC [32]. In 1D, all these variants were shown to be
topologically equivalent to the Harper model, namely, they
have the same distribution of 1CNs [23]. Therefore, the

gaps in such 2D QC variants will have nontrivialV . Note,
also, that similar models that do not depend on � can have
gaps with nontrivial V with accompanying bulk response
and edge phenomena [29].
To conclude, in this Letter, we have presented a novel

2D quasiperiodic model that is associated with the same
topological index as the 4D IQHE—the 2nd Chern number.
Correspondingly, our model exhibits an elaborate edge
phenomena and a quantized charge-pump. We propose
experiments in which charge is pumped through the system
following modifications of the quasiperiodic modulation.
Interestingly, while these modifications differ consider-
ably, they lead to the same pumped charge. This equiva-
lence may seem baffling from a 2D perspective, but follows
from the symmetry of the nonlinear response in 4D. Recent
progress in controlling and engineering systems, such as
optical lattices [33], photonic crystals [34,35], and mole-
cule assembly on metal surfaces [36], makes our 2D model
seem experimentally feasible. Moreover, interactions in
such systems may lead to fractional quasicrystalline phases
which are descendants of the exotic 4D fractional quantum
Hall effect [13]. Thus, our model serves as a porthole by
which to access 4D physics.
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