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Clash of Kinks: Phase Shifts in Colliding Nonintegrable Solitons
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We derive a closed-form expression for the phase shift experienced by (1 + 1)-dimensional kinks
colliding at ultrarelativistic velocities (yv >> 1), valid for arbitrary periodic potentials. Our closed-form
expression is the leading-order result of a more general scattering theory of solitary waves described in a
related paper [Phys. Rev. D 88, 105024 (2013)]. This theory relies on a small kinematic parameter
1/(yv) < 1 rather than a small parameter in the Lagrangian. Our analytic results can be directly extracted
from the Lagrangian without solving the equation of motion. Based on our closed-form expression,
we prove that kink-kink and kink-antikink collisions have identical phase shifts at leading order.
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Introduction and summary.—Scattering theory provides
a crucial link between the Lagrangian specifying the prop-
erties of fields and outcomes of experiments. The scatter-
ing theory of solitary waves (localized waves that travel
without distortion—sometimes colloquially called solitons
[1]) is particularly interesting since such waves play an
important role in many disparate fields from modeling
fluxons in superconductivity [2], optics [3], high energy
physics (e.g., Ref. [4]) to cosmology [5-9]. While isolated
solitary waves have been studied in detail, the physics of
their scattering is not well understood analytically, except
in special integrable cases.

In this Letter, we will consider the simplest of such
solitary waves, that of a single canonical scalar field
governed by a periodic potential in (1 + 1) dimensions

1 1
L= 5(3t¢)2 - 5(6X¢)2 - V(¢), (1)
V(¢) = V(g + Ad). 2)
The equation of motion for ¢ is
I — b +V'(p)=0. 3)

The potential V(¢) is a general periodic potential with
multiple minima. A simple solitary wave in this theory is
a kink: an interpolation between two adjacent minima
which can travel at a constant velocity without any dis-
tortion. Apart from an isolated special case with V(¢) =
(1 — cosg), known as the sine Gordon model, the usual
way to predict the outcome of collisions between kinks is
to numerically evolve the equation of motion (e.g.,
Refs. [10,11]). On the analytical side, perturbative predic-
tions have only been done for cases which are close the
sine Gordon case (see reviews [12,13]).

In this Letter, we demonstrate an analytical calculation
for the outcome of collisions between kinks. Our main
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result is a closed-form expression for the phase shift
(spatial translation) experienced by a stationary kink due
to a collision with an incoming kink or antikink with
velocity v — 1:

1 Ap [A¢
Ax = W . ,[0 dedo,
« [V(¢1) + V(gy) — V(o) + ¢»)
VV(d)V(eh2)

] + 0((yv) ™),

“4)

where y = (1 — v3)"2 and M = [5% dp\J2V() is the
energy of the stationary kink.

Remarkably, the phase shift is an explicit function of the
incoming velocity of the colliding wave and the potential,
and does not require evaluation of the equation of motion.
We emphasize that the periodic potential V(¢) need not be
perturbatively close to the sine Gordon case and hence
encompasses a much wider class of models compared to
previous studies [12].

This simple form of Eq. (4) allows us to immediately
draw several insights into the nature of kink interaction.
First, the leading-order phase shift is the same for both
kink-kink and kink-antikink collisions. (While there is no
contradiction with our result, it is known that at long
ranges, kink-kink interaction is repulsive but kink-antikink
interaction is attractive [4,14,15].) Second, Eq. (4) is not
positive definite; hence, there exist models with negative
phase shifts. In particular, this implies that there exists an
entire class of models where Ax = 0. Third, even though
the collision is dissipative, the lack of time dependence in
the right-hand side of Eq. (4) at leading order implies that
no velocity change occurs at this order. Hence, the collision
is almost elastic.

Equation (4) is the leading-order result of a perturbative
expansion in (yv)~! described in the related paper [16]
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which applies to a wider class of solitary waves and
includes a prescription for an order by order calculation
of higher-order terms. Here, we focus on the derivation of
this leading-order result for the phase shift. As a check, we
performed detailed numerical simulations and found excel-
lent agreement with our analytic answer.

Deriving the phase shift.—A stationary kink ¢ (x) is a
solution to the equation of motion for the Lagrangian in
Eq. (1)

k() = V(¢g(x)), )

such that ¢x(—o0) =0 and Pg(0) = A¢. The profile
exponentially approaches vacuum values beyond some
region ~L from its center—see the part of the curve
labeled ¢ g(x) in Fig. 2. Since the theory is Lorentz invari-
ant, a kink moving to the left at a speed v is obtained by
boosting the stationary solution: ¢ x(y(x + vt)). We set up
the initial condition for a collision at t — —oo by linearly
superposing two kink solutions

d(x, 1) = g(x) + Pi(y(x + vi)). (6)

The outcome of the collision can be written as

¢(x, 1) = px(x) + dxlylx +v0) + hx 1), (1)

where h(x, r) includes all the perturbations generated by
the collision. As we will see, h is small because of the
suppression of the space-time area of interaction of the two
solitary waves: A, « 1/(yv) (see Fig. 1 for details). For
ultrarelativistic collisions, 1/(yv) < 1.

After the fast-moving solitary wave has moved away
from the stationary one, we are essentially left with the
stationary solitary wave plus perturbations generated by
the collision. This spectrum of perturbations includes the
shift in the position Ax of the stationary solitary wave

dr(x + Ax(1) = dx(x) + Ax(t)pi(x) +---. (8)
To extract the phase shift from A(x, 7), we expand it as
h(x, 1) = ¢i(x)Ax(t) + - -+, ©)

where the ellipses represent terms orthogonal to ¢%. The
phase shift Ax(¢) can then be projected from h(x, t) using

Ax() = L PR Db ). (10)

[ dx¢p(x)

To find h(x, 7), we linearize the equation of motion (EOM)
Eq. (3) to obtain

[0 — 02 + Wy(x)]h = —AW(x, t)h — S(x, 1), (11)
where

Wo(x) = V(i (x)), (12)

[l

L
YU
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FIG. 1 (color online). The overall space-time is occupied by
the two solitary waves; i.e., the area where their field values
deviate significantly from vacuum is shown above. The green
strip represents the stationary solitary wave, whereas the orange
one is the incoming solitary wave. Assuming that the solitary
waves simply pass through each other, the area of overlap
between the solitary waves A, is denoted by the black paral-
lelogram. Elementary geometry yields A;, « 1/(yv). For ul-
trarelativistic collisions, the Lorentz contraction of the incoming
solitary waves as well as the short time of collision are respon-
sible for a suppressed Aj,.

AW(x, 1) = V(¢ (x) + g (y(x + v1))) = V(dk(x)),
S(x, 1) = V(¢g(x) + dx(y(x + v1))) (13)

—Vi(pk(x) = V'(gg(y(x +v1).  (14)

Wo(x) is the mass term for perturbations around an isolated
stationary kink, and AW(x, ) is the change in mass due to
the incoming kink, whereas S(x, f) is the external source
which is active only when the two solitary waves overlap.
We will treat the incoming kink as a time dependent
perturbation in the background of the stationary kink.

Before the collision, 7 = 0. During the overlap, as can
be seen from Eq. (11), both AWh and S become nonzero,
sourcing the perturbation 4. However, since AW is multi-
plied by £, its effect is suppressed compared to the effect of
S. Now, since S is only active within A, o 1/(yv), the
perturbation 4 generated by it must also be suppressed by
1/(yv). Thus, we expect the leading-order result of the
collision to be o« 1/(yv).

To solve Eq. (11), we expand h as

h(x, 1) =D Go(0)f(x), (15)

where {f,(x)} is an orthonormal basis obtained from the
eigenvalue equation

[_8)26 + WO(X)]fu(x) = Eafa(x)‘ (16)

As can be easily checked, the ground state is the zero energy
mode E, = 0 given by fy(x) = M~'/2¢).(x). In the pre-
vious section, we used this zero mode « ¢%(x) to project
out the phase shift Ax from the general perturbation A.
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FIG. 2 (color online). The orange curves are the numerical
field profiles before, during, and after collision. The black curve
is the superposition solution which ignores all interactions.
We can see a clear phase shift after the collision.

Since we are only interested in the phase shift Ax,
instead of solving & from Eq. (11), we multiply Eq. (11)
by ¢ and integrate with respect to x to get an equation for
Ax as a function of #:

[ dxS(x, 1)@l (x)
fdxcﬁ’,%(x) ’

In deriving the above equation, we used Eq. (16), the
orthonormality of {f,(x)}, and ignored the AWh term since
we are only interested in the leading-order effects. We can
similarly project onto other modes to obtain the entire
spectrum, but here we will focus on the zero mode. With
the initial condition Ax(t — —o0) = 0, Eq. (17) can be
integrated to get

0?(Ax) = 17

Ax(t) = % [_t dr(t — T)fde(x, TPk (x), (18)

where M = [ dx¢/Z(x). The source S(x, 7) is only turned
on during A;, and is exponentially close to zero other-
wise. Hence, the space-time area of integration is limited
to A, shown in Fig. 1. Now, consider the coordinate
transformation

dxdt = (yv)~'dqdp.
(19)

q=x p = yx+ vr);

Using these coordinate transformations, as well as the

restriction of the integration range to A, we have

1
Axt) = (yv)M

fﬂ, dqdplt — 7(q, p)1S(q, p)d%(q),

(20)

FIG. 3 (color online). We plot the numerically calculated
phase shift undergone by a stationary kink colliding with an
incoming kink as a function of (-yv). For this plot, the scalar field
potential V(¢) = (1 — cos¢)(1 — 0.5sin’¢). The orange curve
is the theoretical prediction at leading order in 1/(yv), and the
black dots are the simulation results.

where S(g, p) = V'(¢k(q) + ¢k(p)) — V(dk(q) —
V(¢x(q)) and 7(q, p) = —(q/v) + p/(yv). We now

move to field space from ¢ space using ¢i(g) =
V2V(dk(q)), which can be obtained from Eq. (5). A
similar expression holds for p as well. Since ¢ is a mono-
tonic function of g and p, inverses exist, and hence we can
use dg = d,/\J2V(¢,) and dp = d,/J2V(,). After
a few integrations by parts, we get Eq. (4). Explicit inte-
gration shows that the term o ¢ in Eq. (18) is zero to
O(yv)~2. Hence, we are finally left with a time indepen-
dent phase shift, as asserted in Eq. (4). Since an antikink
P ax(x) = pg(—x), replacing p — —p in the incoming
kink profile leads to an identical leading-order phase shift
for a kink-antikink collision.

Comparison with simulations.—To check our expres-
sion, we numerically evolve the full equation of motion.
From the numerical result ¢ (x, 1), we can define

h(x 1) = $(x, 1) — px(x) — dr(y(x +vn) (21

and extract the phase shift from / using Eq. (10). We use a
finite integration range in Eq. (10) such that the exponen-
tial tail of ¢ (x) outside is negligible. This range is smaller
than the box size where we evolve the full equation of
motion, and we make the extraction only after the fast-
moving kink is sufficiently far from the stationary one.
Note that while the analytical result of Ax is time inde-
pendent, the numerical result need not be. There are a
number of sources of time dependence. First, the orthogo-
nality between ¢ (x) « fo(x) and other {f,(x)} is not exact,
given a finite x integral. Fortunately, this additional time
dependence is usually periodic and can easily be removed
by an average. Another source is a higher-order dependence
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FIG. 4 (color online). The phase shift [multiplied by (yv)]
undergone by a stationary kink colliding with an incoming
kink as a function of the « parameter in the potential V(¢) =
(1 — cosp)(1 — asin®¢). For this plot, (yv) = 100. The orange
curve (and orange dots) is the theoretical prediction at leading
order in (yv)~!, and the black dots are the simulation results.

in time—the kink’s velocity. It is not surprising that the kink
changes velocity after a collision. Our analytical calculation
shows that the leading-order velocity change is zero, but the
next order is generally not. Our numerical data indeed show
that as (yv) increases, the linear dependence drops faster
than the constant piece. We fit the slope of this linear
dependence and remove it from the constant piece. It is
this constant piece that is compared with Eq. (4).

We applied both the analytical and the numerical
methods to the collision of kinks in the model defined by

V() = (1 — cosp)(l — asin®¢p), —1<a<l. (22)

We carried out a large number of detailed numerical
simulations with —1 < a <1 and 3 = (yv) =< 100. The
parameter range we cover is clearly beyond small defor-
mation from the sine Gordon model (o = 0) [12]. While
we have chosen a potential that is symmetric around each
minimum in the detailed numerical example, we hasten to
add that Eq. (4) does not rely on this symmetry or this
particular form.

In Fig. 3, we plot Ax as a function of (yv) and in Fig. 4
as a function of «. Both figures demonstrate the excellent
agreement between analytical predictions and numerical
results. Note that when « = 0.9564, the phase shift
becomes negative.

Conclusion.—Understanding soliton interactions has
been an active area of research for more than 50 years.
Many interesting physical phenomena involve solitons
such as fluxons in Josephson junctions [13], nonlinear
optical solitons [3], reheating after inflation [9], and
domain wall collisions in cosmology [5]. Apart from

numerical simulations, there are two well-known analyti-
cal methods: perturbative analysis around integrable
systems and dynamical-systems analysis of collective-
coordinate ordinary differential equations (ODEs)
[10,17,18]. Here, and in our related paper [16], we dem-
onstrate a novel third method—a kinematics based scatter-
ing theory at relativistic velocities. Our method is not
limited to small deformations from special models. It is
also complementary to numerical techniques which
become unwieldy for ultrarelativistic solitary wave
collisions.
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