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The Goos-Hänchen (GH) shift refers to a lateral displacement (from the path expected from geometrical

optics) along an interface in totally internal reflection. This phenomenon results from a coherence effect.

In order to bring to light the role of coherence, the reflection of partially coherent light fields was

investigated within the framework of the theory of coherence. A formal expression for the GH shifts of

partially coherent light fields is obtained in terms of Mercer’s expansion. It is shown that both the spatial

coherence and the beam width have an important effect on the GH shift, especially near the critical angles

(such as totally reflection angle). These results are important to observe the GH shifts of the beams with

imperfect coherence, like x-ray and matter-wave beams.
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When a bounded light beam is totally reflected from a
planar interface, there is a lateral displacement from the
path expected from geometrical optics. This is known as
the longitudinal Goos-Hänchen (GH) shift [1]. This shift
results from a coherence effect, and it is explained as [2]
the different transverse wave vectors of a bounded light
beam undergoing different phase changes, the sum of these
waves forming a reflected beam with a lateral shift.
Recently, the GH shift has also been seen as the sum of
Renard’s conventional energy flux plus a self-interference
shift, which originates from the interference between the
incident and reflected beams [3]. Furthermore, the classical
Fresnel formulas for laws of refraction and reflection are
discovered to be not applicable to partially coherent
sources [4]. These investigations indicate that coherence
should be very important to the GH shift.

However, recent investigations [5–9] have raised an
important question: Does the spatial coherence influence
the GH shift? The experiments, performed by Loffler et al.
[6] and Merano et al. [7] did not demonstrate this effect,
but the earlier experiment [10] observed the large differ-
ence between the measured GH shift of a partially coherent
light-emitting diode light and the theoretical result of a
coherent light, without a satisfactory explanation. To solve
this issue is significant not only to the optical science, but
also to other fields that involve the coherent wave phe-
nomena, such as the GH shifts of neutrons [11,12], elec-
trons [13,14], and spin waves [15]. The perfect coherent
sources are hard to obtain for x-ray beams [16] and matter-
wave beams [12,17]. As emphasized in Ref. [12], the
observed GH shift may be used to accurately determine
the coherence properties of the sources. Therefore, it is
necessary to study this issue thoroughly and reveal the role
of spatial coherence on the GH shift.

In this Letter, the scalar theory of coherence is employed
to investigate the GH shift. First, a key formula to calculate
the GH shift of partially coherent fields (PCFs) is derived
in terms of the mode expansion. Then the physical mecha-
nism, about the dependence of the GH shift on both the
spatial coherence and beam width, is explained. Finally, an
experimental proposal is suggested to show the impact of
the spatial coherence on the practical GH shift near the
critical angle.
A two-dimensional PCF is considered in the current issue.

The cross-spectral density (CSD), Wðx1; z1; x2; z2;�Þ, is
employed to describe the propagation of the PCF, where
ðx1; z1Þ and ðx2; z2Þ are the two points in the fields, and � is
the frequency of light. Here � is omitted for simplicity. Then
Wðx1; z1; x2; z2Þ can be expressed in the form of Mercer’s
expansion [18]

Wðx1; z1; x2; z2Þ ¼
X
m

�mc
�
mðx1; z1Þc mðx2; z2Þ; (1)

where c m are the eigenfunctions and�m � 0 are the eigen-
values. Equation (1) is also rewritten as

Wðx1; z1; x2; z2Þ ¼
X
n

�mW
ðmÞðx1; z1; x2; z2Þ; (2)

where WðmÞðx1; z1; x2; z2Þ ¼ c �
mðx1; z1Þc mðx2; z2Þ repre-

sents the CSD of a coherent field. When PCFs are reflected
at the interface (z1;2 ¼ z) between twomedia, eachmode c m

experiences a lateral shift,�m. Therefore, the reflected CSD
for c m, at the interface, is given by

WðmÞ
r ðx1; z1; x2; z2Þ ¼ WðmÞ

r ðx1; z; x2; zÞ
¼ jrð�; ��mÞj2c �

mðx1 ��m; zÞ
� c mðx2 � �m; zÞ; (3)

PRL 111, 223901 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

27 NOVEMBER 2013

0031-9007=13=111(22)=223901(5) 223901-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.223901


where ��m is the angular spread of the mth mode, and
rð�; ��mÞ is the averaged reflection coefficient within ��m
around the angle of incidence, �. Since ��m may become
very broad for a largem, the first-order Taylor expansion on
the reflection coefficient r around � is invalid [19]. Thus,�m

are different for different modes due to the size effect of each
mode. Note that �m are also different from the formula,
�FT ¼ �Re½ið@ lnr=@�Þ� or �ð�d�r=2�d�Þ, which is
based on the stationary phase method under the approxima-
tion of the first-order Taylor expansion [2,20,21], here �r is
the phase of r. Therefore, the total reflected CSD of a PCF is
expressed as

Wrðx1; z; x2; zÞ ¼
X
m

wmð�; ��mÞc �
mðx1 ��m; zÞ

� c mðx2 ��m; zÞ; (4)

where wmð�; ��mÞ ¼ �mjrð�; ��mÞj2 represents the weight
of themth reflected mode. Then the intensity of the reflected
beam is

Irðx; zÞ ¼
X
m

wmð�; ��mÞjc mðx� �m; zÞj2: (5)

From the normalized first moment of a light field [22,23],
� ¼ R

xIrðx; zÞdx=
R
Irðx; zÞdx, the resultant GH shift is

obtained as follows:

� ¼
P
m
wmð�; ��mÞ�mP
m
wmð�; ��mÞ ; (6)

where the condition,
R jc nðx; z;�Þj2dx ¼ 1, is used.

Equation (6) is a formal expression for calculating the GH
shift of a PCF. Since the reflection coefficient r has not been
specified to a particular system, Eq. (6) may be applied for
calculating the lateral shifts of PCFs in any system [24],
including both the partial and total reflections, for example,
as discussed in Refs. [20,22,26]. This equation is different
from that in Refs. [5,6]. InRefs. [5,6], all the lateral shifts�m

are assumed to be equal to�FT, so that� ¼ �FT. However, it
is not true for PCFs, especially for the incoherent sources. In
fact, it is shown (in the below discussion) that asm increases,
there is a large difference between �m and �FT. Even for a
coherent beam,�m do change due to the finite-size effect of
beams [25,27]. Therefore, the exact formulae for�m for each
mode is defined as [22,23,26]

�m ¼
Z

xjc r
mðx; zÞj2dx

�Z
jc r

mðx; zÞj2dx; (7)

where c r
m is the mth reflected field at the interface. For an

incoherent light, all the contributions�m to the resultant GH
shift � must be included. Moreover, the weight factor, wm,
contains the value of�m, which also strongly depends on the
coherence properties of PCFs.

In order to demonstrate the lateral shift�m of each mode
of PCFs in Eq. (6), let us briefly review a famous example:
a Gaussian shell-model (GSM) beam, which is an excellent

model for describing PCFs [18]. The normalized eigen-
functions and eigenvalues of GSM beams are given by [18]
(see also Refs. [28,29])

c mðxÞ ¼
�
2c

�

�
1=4 1

ð2mm!Þ1=2 Hm½xð2cÞ1=2�e�cx2 ; (8)

and �m ¼ A2½�=ðaþ bþ cÞ�1=2½b=ðaþ bþ cÞ�m, where
a ¼ ð4�2

sÞ�1, b ¼ ð2�2
gÞ�1, c ¼ ½a2 þ 2ab�1=2, and Hm

are the Hermite polynomials. Here �s and �g are the

beam half-width and spectral coherence width of PCFs,
respectively. The ratio of �m to �0 is [18]

�m=�0 ¼ ½ðq2=2Þ þ 1þ q½ðq=2Þ2 þ 1�1=2��m; (9)

where q ¼ �g=�s is a measure of the degree of global

coherence of a GSM source. Obviously, for q � 1,
�m=�0 � q�2m � 1 for m> 0. Hence, the beam can be
well approximated by the lowest-order mode. However, for
q � 1, �m=�0 � 1�mq. Thus, for an incoherent light, a
large number of modes (of the order 1=q) are needed to
represent the light field adequately.
Since each mode is perfectly coherent, its shift can be

obtained from the coherent angular-spectral theory
[20,22,26] under a certain angle of incidence, as illustrated

in Fig. 1(a). From Eq. (8), its angular spectrum, ~c mðkxÞ,
can be obtained via a Fourier transformation. For an

inclined incidence, ~c mðkxÞ becomes ~c mðkx � kx0Þ with
the replacements �s ! �s sec� and �g ! �g sec�, where

kx is the transverse component of the wave vector k in the
prism, and kx0 ¼ k sin�. Therefore, c r

m is given by

c r
mðxÞ ¼ 1ffiffiffiffiffiffiffi

2�
p

Z
rðkxÞ ~c mðkx � kx0Þ exp½ikxx�dkx: (10)

Then, from Eq. (7), all shifts �m can be obtained. In the
following calculations, the refractive index of the prism is
n ¼ 1:514 at wavelength � ¼ 675 nm, and the critical
angle of the totally internal reflection is �c ¼ 41:34	.
Here, only the result for the transverse magnetic (TM)
polarization is presented due to the similarity between
TM and transverse electric (TE) cases [30].
Effect of spatial coherence.—Figures 1(b) and 1(c) show

the typical dependence of the lateral shifts�m on the spatial
coherence (q) under different cases: (b) � ¼ 41:5	 and
(c)� ¼ 45	. Here,�s ¼ 0:1 mm ( � �) in these two cases.
From Figs. 1(b) and 1(c), the lateral shifts �m near �c are
strongly dependent on q. For m ¼ 0, the value �0 slightly
increaseswhenq is gradually close to 0.1, but it decreases as
q further decreases. For a large m, the changes of �m

become more dramatic with the decreasing of q, and more
oscillations appear due to the fact that the part components

of ~c mðkx � kx0Þ have been cut off below �c as a result of the

broadening angular spectrum of ~c mðkx � kx0Þ with
the decreasing of q. When � is far above �c, see Fig. 1(c),
the values�m have a greater change for the large value ofm.
Thus, there exists a difference between the coherent
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and incoherent limits [8,31]. By comparing Fig. 1(b) with
Fig. 1(c), it is further found that the changes of �m near �c
are more remarkable than for � being far above �c.

Figure 1(d) plots another situation for the dependence of
�m on q when � ¼ 41:5	, but �s ¼ 2 mm. Although � is
near to �c, the changes of �m are considerably small as
long as q > 0:01. This is due to the suppressing effect of
beam width ð2�sÞ on�m discussed below. In Fig. 1(d), it is
also shown that there is still a large difference between �m

and�FT in the incoherent limit (q < 0:01). Asm increases,
some oscillations still appear for a sufficient small q.

Figure 2 further shows the changes of �m as a function
ofm under the two limits: q ¼ 10 (coherent) and q ¼ 0:01
(incoherent). For the fully coherent limit (q � 1), when �
is close to �c [see Fig. 2(a)], �m vary dramatically as m
increases, while when � is far above �c [see Fig. 2(b)], �m

are nearly independent of m and they are overlapped with
the corresponding value of �FT. Thus, in the full-coherent
limit, �m are independent of m only when � is far away
from �c. Meanwhile, only the lateral shift �0 of the lowest
mode (m ¼ 0) mainly contributes to the resultant shift �,
because �m decrease quickly for m> 0, see the inset in
Fig. 2(a). For the completely incoherent limit (q � 1), see
Figs. 2(c) and 2(d), whether � is close to or far away from
�c, �m do vary as m increases, and the contributions of the
higher-order modes must be included since �m change
very slowly for m> 0, see the inset in Fig. 2(c). This leads
to the resultant shift deviated from the full-coherent limit.

Effect of beam width ð2�sÞ.—The beam width of PCFs
also plays a role on the GH shift, since the effective width
(2�eff

m ) of every c m is related to both�s and�g [18]. From

Eq. (8), one can obtain�eff
m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 1
p

�s=½1þ ð4=q2Þ�1=4
and ��m ¼ ð180 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 1
p

=�k�sÞ½1þ ð4=q2Þ�1=4 (in the
unit of degree). For a fixed q, if �s increases, then �eff

m

increases but ��m decreases. It means that increasing �s

suppresses the effect of q on the shift �m. By comparing
Figs. 1(b) and 1(d), it is seen that increasing �s leads to
weaken the effect of spatial coherence on the GH shift. In
principle, an incoherent field has an infinite number of
modes; for any q, as m ! 1, the shift �1 should be zero
because of �eff

m ! 1 and ��m ! 1. It should be empha-
sized that, for a coherent beam, the effect of beamwidth has
been investigated in the early literature [19,25] and has been
demonstrated experimentally [32]. Therefore, it is expected
that the beam width also has an effect on the GH shift
for PCFs.
Figure 3 shows the detailed effect of�s on�m near �c. It

shows that, see Fig. 3(a), even for the full-coherent limit
(q ¼ 10), when �s is small enough (< 0:3 mm but � �),
the values �m begin to be significantly different from �FT,
and the difference becomes larger as m increases.
Remember that it is only the lowest mode that dominates
the shift � in the full-coherent limit, because �m ! 0 for
m> 0. However, in the incoherent limit (q ¼ 0:01), see
Fig. 3(b), when �s is larger than 2 mm, the difference
between �m and �FT gradually disappears due to the
suppressing effect of �s on �m, while for �s < 2 mm,
�m change dramatically and are very different from �FT.
In fact, the role of�s on�m for a small q is similar to the

role of q on �m for a small �s, see Figs. 1(b) and 3(b). On
comparing Fig. 3(a) with Fig. 1(d), it further shows that the
role of �s on �m for a large q is similar to the role of q on

(a) (b)

(c) (d)

FIG. 2 (color online). The lateral shifts �m as a function of m
under two limits: q ¼ 10 (a),(b) and q ¼ 0:01 (c),(d), at � ¼
41:5	 (a),(c) and � ¼ 45	 (b),(d). Insets in (a),(c) show the value
of �m=�0 as a function of m for q ¼ 10 and q ¼ 0:01, respec-
tively. The dashed lines in (a)–(d) denote the values �FT.

(a)

(c) (d)

(b)

FIG. 1 (color online). (a) The schematic of total reflection
from a prism. (b)–(d) The dependence of the lateral shifts �m

on the spatial coherence (q) at different �: � ¼ 41:5	 (b),(d) and
� ¼ 45	 (c). The blue dashed lines in (b),(c),(d) denote the
values �FT. In (b),(c) �s ¼ 0:1 mm, and in (d) �s ¼ 2 mm.
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�m for a large �s. Therefore, both �s and q have the
equivalent role on the GH shift.

Now the roles of �s and q on the GH shift have been
known, and how or why they affect the shift � has been
explained. However, it is inconvenient for using Eq. (6) to
obtain � since it is time consuming to calculate all shifts
�m when q is very small. For example, if q ¼ 0:01, it
needs 100 modes at least. There is a much more realistic
method for directly obtaining �. Based on the previous
investigation, the intensity expression of the reflected
PCFs, at the interface (z ¼ 0), is given by [31],

Irðx; 0Þ ¼ Wrðx; 0; x; 0Þ
¼ 1

2�

ZZ
r�ðkx1Þrðkx2ÞWiðkx1; 0; kx2; 0Þ

� exp½�iðkx1 � kx2Þx�dkx1dkx2; (11)

where Wiðkx1; 0; kx2; 0Þ is the incident CSD in the spatial
angular-frequency domain at z ¼ 0. Substituting Eq. (11)
into the definition of�, we can obtain the GH shift of PCFs
by the numerical method.

Finally, let us briefly discuss how to experimentally
demonstrate the effect of spatial coherence on the GH shift,
since the experiments [6,7] have not revealed this effect. In
the experiments [6,7], the authors increased �s for obtain-
ing a small q, which in fact suppresses the effect of q on the
GH shift. From the above discussion, it is known that the
large �s weakens the effect, and near �c, the spatial coher-
ence has a larger effect. Thus, choosing a small and fixed
�s is beneficial for observing the effect near �c in the
experiment. Figure 4 presents the dependence of the abso-
lute GH shifts, for both TM and TE cases, on its spatial
coherence for experimental reference. Here �s ¼ 0:2 mm,
and q ¼ 10, 0.1, 0.05, 0.02, and 0.01. From Fig. 4, for a full
coherent light (q ¼ 10), there are nonzero GH shifts above
�c but zeros below �c, and the shifts � in this situation, for
both TM and TE cases, are overlapped with the corre-
sponding curves of �FT, respectively. However, for a
PCF or an incoherent light field, the shifts above �c may
be smaller or larger than �FT. More interestingly, the
lateral shifts below �c, for both TM and TE cases, are no
longer equal to zero. This is a distinct result, for PCFs,
which is completely different from the full-coherent

prediction. In fact, this effect has been observed in a recent
experiment [10], where a nonzero lateral shift below �c is
measured without an appropriate explanation. The nonzero
GH shifts of PCFs below �c are very similar (qualitatively
not quantitatively) to the effect of the narrow beam width
on the GH shifts [25,33]. It should also be pointed out that
the profiles of the reflected incoherent fields are unchanged
even if � is close to (or below) �c. Since the curves in Fig. 4
have the same characteristic as with other experiments
[23,34,35], we hope this suggestion could lead to a direct
experimental observation in the system of the total internal
reflection.
In summary, the formal expression (6) of the GH shift of

PCFs, which was obtained by using the exact theory of
coherence, reveals its dependence on both the spatial co-
herence and beam width. This result can explain why the
recent experimental results did not show this effect [6,7].
Meanwhile, a potential experiment is discussed for dem-
onstrating this effect and displaying a distinct effect for
experimental verification. These effects are very important
to the applications of the GH shift in nano- and micro-
scaled structures [34,36,37], where the light sources are
usually focused into the small region (about a few wave-
lengths or less) and coherence plays a significant role in the
shift. The results also have important impact for other
fields, where the fully coherent sources are usually not
available. For example, the x-ray beams are usually par-
tially coherent [38], the results presented here may truly
explain a discrepancy of the GH shift of the x ray near the
critical angle in its Bragg diffraction [16]. Furthermore, the
result indicates that, in the future, observation of the GH
shift of matter-wave beams, such as neutron beams [11,12],
atom beams [17], and electron beams [13,14], should
include the impact of the spatial coherence of the sources,
especially for highly precise measurements.
This research is supported by NPRP Grant No. 4-346-1-

061 by the Qatar National Research Fund (QNRF) and a
grant from King Abdulaziz City for Science and
Technology (KACST). This work is also supported by

(a) (b)

FIG. 4 (color online). The resultant GH shifts, for (a) TM cases
and (b) TE cases, as a function of the angle of incidence under
different q with a fixed �s ¼ 0:2 mm. Here �c ¼ 41:34	.

FIG. 3 (color online). Effect of �s on the shifts �m of each
mode under q ¼ 10 (a) and q ¼ 0:01 (b), with � ¼ 41:5	.
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