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We consider a general class of integrated quantum systems where photon-photon interaction occurs in a

quantum device that is localized in space. Using techniques that are closely related to cluster decom-

position principles in quantum field theory, we provide a general constraint on the analytic properties of a

two-photon S matrix in this class of systems. We also show that the photon-photon interaction in these

systems inevitably leads to frequency mixing and entanglement and that frequencies of the single photons

cannot be preserved in these systems.
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Creating a strong photon-photon interaction at the few-
photon level is of great importance for quantum informa-
tion science. While strong photon-photon interactions were
first realized in atomic systems [1], in recent years there
have been significant experimental efforts in seeking to
realize such interactions on chip in integrated systems
[2–6]. In integrated systems, few-photon states can be
routed via nanophotonic waveguides or microwave trans-
mission lines to couple with a quantum system [Fig. 1(a)],
which provide new possibilities for controlling photon-
photon interactions [7].

The experimental efforts, in turn, have motivated sig-
nificant efforts aiming to theoretically describe photon-
photon interactions in integrated systems. The interaction
between two photons is fundamentally characterized by the
two-photon Smatrix. A number of authors have calculated
two-photon S matrices for waveguides coupling to a wide
variety of quantum systems, including single or multiple
atoms having either two or multiple levels [8–17], a cavity
with Kerr nonlinearity [18], an optomechanical cavity [19],
and a cavity with an atom inside [20–22]. These calcula-
tions have provided substantial insights into the nature of
the photon-photon interaction in these specific geometries.

In this Letter, complementary to all the detailed calcu-
lations on specific geometries, we consider the general
analytic structures of the two-photon S matrices in inte-
grated systems. A common characteristic of all the systems
considered in Refs. [8–22] is that the quantum system that
induces the photon-photon interaction is localized in space.
Here, using an argument related to the cluster decomposi-
tion principle [23–25] in quantum field theory, we show
that such a spatially local nature of photon-photon inter-
action provides strong constraints on the structure of the
two-photon S matrix. We also show that such general
constraints can be used to guide the design of quantum
information processing devices.

To describe the general system shown in Fig. 1(a), we
consider the Hamiltonian (@ ¼ 1)

H ¼
Z

dkcyk ck þHint½ck; cyk ; a�; (1)

where ck (c
y
k ) is the annihilation (creation) operator of the

photon state in the waveguide. These operators satisfy the

FIG. 1 (color online). A photonic waveguide coupled to a local
region, as described by the Hamiltonian Hint where a photon-
photon interaction occurs. (a) The first main result of this Letter:
When a photon-photon interaction occurs, the frequency of the
single photons, as represented by the colors here, cannot be
preserved. (b) The schematic of the proof: The effect of inter-
action should vanish as the separation L of the two single-photon
pulses goes to infinity.
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standard commutation relation ½ck; cyk0 � ¼ �ðk� k0Þ. The
group velocity is set to be vg ¼ 1 so that the single

photon’s frequency is equal to its momentum. Here for
simplicity we consider a waveguide consisting of only a
single mode in the sense of Ref. [9]. The argument here,
however, can be straightforwardly generalized to wave-

guides supporting multiple modes.Hint½ck; cyk ; a� describes
a spatially localized region, referred to here as a ‘‘device,’’
that couples to the waveguide. The symbol a here generi-
cally represents the internal operators of the device. Since
we are interested in nonlinear interactions, Hint in general
is not in the bilinear form of boson operators. We consider
the case where the number of photons is conserved, i.e.,
½H;N� ¼ 0, where N is the total excitation operator. In the
single excitation subspace, the scattering matrix of the
system is in general of the form

Spk ¼ tk�ðp� kÞ; (2)

where tk is the transmission coefficient and the � function
arises from the energy conservation. For two incident
photons, with their momenta denoted by k1 and k2, respec-
tively, if there is no photon-photon interaction, the two-
photon scattering matrix can be straightforwardly written as

S0p1p2k1k2
¼ tk1 tk2½�ðp1 � k1Þ�ðp2 � k2Þ

þ �ðp1 � k2Þ�ðp2 � k1Þ�: (3)

Notice in this noninteracting case that the energy of
the individual photons are preserved after the scattering
process. In the presence of a photon-photon interaction, the
two-photon S matrix is modified as

Sp1p2k1k2 ¼ S0p1p2k1k2
þ iTp1p2k1k2 : (4)

This equation can be considered as the definition of the
T matrix.

The first main result of this Letter is as follows: We show
that, for any device of the type as described by (1), the
T matrix in general must have the form

Tp1p2k1k2 ¼ Cp1p2k1k2�ðp1 þ p2 � k1 � k2Þ; (5)

which contains only a single � function as required by
energy consideration. The T matrix cannot take the form

1

2
Ck1k2½�ðp1�k1Þ�ðp2�k2Þþ�ðp1�k2Þ�ðp2�k1Þ�: (6)

In other words, in the presence of a photon-photon
interaction, after a scattering process, the energy of
individual photons cannot be conserved. This is in spite
of the fact that the S matrix corresponding to (6) satisfies
the constraint of the energy conservation and can be made
to satisfy all other symmetry constraints such as the time-
reversal symmetry.

This result can be proved by using the procedure, as
schematically shown in Fig. 1(b), which is closely related
to the cluster decomposition principle in quantum field
theory. As the start of the proof, we consider a two-photon

in state consisting of two single-photon pulses spatially
well separated from each other as shown in Fig. 1(b). By
the identical-particle postulate, the in state therefore has
the form

j �k1; �k2; Li � 1ffiffiffi
2

p ½j �k1i � e�ip̂Lj �k2i þ j �k2i � e�ip̂Lj �k1i�; (7)

where j �ki ¼ R
dkf �kðkÞjki describes a single-photon pulse

with mean momentum �k [26]. p̂ is the momentum operator,
and L is the spatial separation between two pulses. Since
the device occupies a localized region in space, the cluster
decomposition principle states that the interaction between
the two photons should vanish if the spatial separation
between the pulses is large enough [23], i.e.,

lim
L!1h �p1; �p2; LjTj �k1; �k2; Li ¼ 0: (8)

On the other hand, if wewere to assume a T matrix with the
form in (6) that contains the product of two � functions, by
inserting the complete momentum basis in (8), one can
compute directly that

h �p1; �p2; LjTj �k1; �k2; Li ¼ 1

8

Z
dk1dk2Ck1k2f1þ cos½ðk1

� k2ÞL�g½f��p1
ðk1Þf��p2

ðk2Þ
þ f��p1

ðk2Þf��p2
ðk1Þ�½f �k1

ðk1Þf �k2
ðk2Þ

þ f �k1
ðk2Þf �k2

ðk1Þ�: (9)

The result of (9) contains a term that is independent of L:

1

8

Z
dk1dk2Ck1k2½f��p1

ðk1Þf��p2
ðk2Þ þ f��p1

ðk2Þf��p2
ðk1Þ�

� ½f �k1
ðk1Þf �k2

ðk2Þ þ f �k1
ðk2Þf �k2

ðk1Þ�: (10)

This term for arbitrary pulse shape f does not vanish and,
hence, violates the cluster decomposition principle of (8).
[As an illustrative example, we provide an explicit evalu-
ation of (9) assuming a spatially localized wave packet
form for f in Supplemental Material [27].] Therefore, we
conclude that the T matrix Tp1p2k1k2 should contain only a

single � function as that in (5). No additional � functions
are allowed, and as a result an individual photon’s momen-
tum cannot be preserved.
Intuitively, one can visualize the interaction process of

the Hamiltonian (1) by imagining that the first photon
enters the localized region and generates an excited state.
While the region is in the excited state, the second photon
then scatters inelastically off the excited state [8]. With
such a picture, one should expect that the energy of indi-
vidual photons is not conserved by the interaction. Our
derivation above provides a rigorous support to such an
intuitive picture.
As a second main result of this Letter, we now show that

we can use the thought-experimental setup of Fig. 1(b) to
strongly constrain the analytic properties of the two-photon
S matrix. The device in Fig. 1(a) is localized in space.
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Therefore, in the single excitation subspace, we generally
expect that, after the injection of a single-photon pulse, the
amplitude of excitation inside the device should decay in
the form

P
me

�i!mt��mt as controlled by a set of simple
poles !m � i�m in the single-photon S matrix. The two-
photon state of (7) comes into the same device. After the
injection of the first pulse, the excitation in the device then
decays into the waveguide. The interaction between
the photons can occur only if there remains excitation in
the device when the second pulse arrives. Therefore, we
expected that, as L ! 1, the outcome of such an interac-
tion, as characterized by hp1; p2jTj �k1; �k2; Li, should also
decay in the form

P
me

�i!mL��mL.
The heuristic argument above constrains the analytic

properties of the two-photon S matrix in the complex plane
ofmomentumdifference between the two incoming photons
�k ¼ k1 � k2, because the spatial separation between the
pulses L is conjugate to �k. To see this conjugate relation,
let E ¼ p1 þ p2 be the total momentum and rewrite
Cp1p2k1k2 asCp1p2

ð�kÞ in (5); a calculation in themomentum

basis of the plane wave states jk1; k2i then results in

hp1;p2jTj �k1; �k2;Li¼ 1

8
e�iEL=2

Z
d�kCp1p2

ð�kÞ
�ðe�i�kL=2þei�kL=2Þ
�
�
f �k1

�
Eþ�k

2

�
f �k2

�
E��k

2

�

þf �k1

�
E��k

2

�
f �k2

�
Eþ�k

2

��
: (11)

In order to obtain from (11) the desired exponential decay
behavior of e�i!mL��mL, the poles of Cp1p2

ð�kÞ must be

located at ð�k=2Þ ¼ �ððE=2Þ �!m þ i�mÞ, as can be seen
by the counter integral in the complex �k plane.
Consequently, the heuristic argument above requires that
all the poles of the two-photon S matrix in the complex �k

plane are completely determined by the properties of
single-photon excitation.

Finally, for systems with time-reversal symmetry, the
two-photon S matrix is symmetric with respect to the
exchange of �k and �p � p1 � p2. Therefore, in general,

the two-photon T matrix has the form

Tp1p2k1k2 ¼
Y
n

AðE;�k;�pÞ
E�Enþi�n

Y
m

1�
�k

2

�
2�

�
E
2�!mþi�m

�
2

� 1�
�p

2

�
2�

�
E
2�!mþi�m

�
2
�ðE�k1�k2Þ; (12)

where AðE;�k;�pÞ is a fully analytic function with sym-

metries AðE;�k;�pÞ ¼ AðE;�p;�kÞ ¼ AðE; j�kj; j�pjÞ
and can be further constrained by the unitarity requirement
of the S matrix. The analysis here completely determined
the analytic properties of the two-photon S matrix in the
complex �k and �p planes. The additional poles of the

two-photon S matrix can exist only in the complex total

energy E plane. These poles, if they exist, correspond to
two-photon resonances of the device. The location of such
a resonance in the complex E plane in many systems can
be estimated by diagonalizing the Hamiltonian of the
localized region alone in the two-excitation subspace.
In recent years, there have been a large number of

specific calculations on photon-photon scattering in inte-
grated systems, where the interaction Hamiltonian Hint

considered included waveguide coupling to a two-level
atom [8–10], multiple two-level atoms [12,14], a multi-
level atom [15–17], a cavity with Kerr nonlinear media
[18], and a cavity with embedded atoms [20,21]. Our
general results, that the T matrix must have the analytic
structure of (12) and cannot be of the form of (6), point to a
general unifying feature of all these specific calculations.
While the concept of the cluster decomposition principle is
certainly well known in quantum field theory, the fact that
such a principle provides a strong constraint on the photon-
photon scattering matrix in integrated systems has never
been explicitly pointed out before.
The general discussions above provide an important

constraint when one seeks to construct quantum informa-
tion processing devices. Below, as an example that serves
to illustrate and confirm the results above, we consider
the possibilities of a two-photon phase gate. In quantum
information processing, the two-qubit conditional quantum
phase gate is represented by the following unitary trans-
formation:

j0ij0i! j0ij0i; j1ij0i! ei�10 j1ij0i;
j0ij1i! ei�01 j0ij1i; j1ij1i! eið�10þ�01þ�Þj1ij1i; (13)

where an additional nonzero phase � appears due to the
designed nontrivial two-qubit interaction. A polarization-
based photon phase gate has been demonstrated [28,29],
where j0i and j1i correspond to the polarization states of
two single photons.
Instead of a polarization-based phase gate, one may

speculate on the existence of a momentum-based phase
gate [30,31] as defined by the following unitary transfor-
mation:

j0ij0i!j0ij0i; jk1ij0i!ei�k1 jk1ij0i;
j0ijk2i!ei�k2 j0ijk2i; jk1ijk2i!eið�k1þ�k2þ�ðk1 ;k2ÞÞjk1ijk2i:

(14)

Here k1 and k2 are momenta of two single photons. �k1 and

�k2 are the phase shifts that a single photon experiences

as it passes through the device. The gate operation is
described by the additional phase �ðk1;k2Þ when both pho-

tons pass through. Equivalent to (14), the Smatrix of such a
phase gate can be identified as

Sp1p2k1k2 ¼ S0p1p2k1k2
þ iTp1p2k1k2 ;

where
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S0p1p2k1k2
¼ ei�k1ei�k2 ½�ðp1 � k1Þ�ðp2 � k2Þ

þ �ðp1 � k2Þ�ðp2 � k1Þ�;
iTp1p2k1k2 ¼ ei�k1ei�k2 ðei�ðk1 ;k2Þ � 1Þ½�ðp1 � k1Þ�ðp2 � k2Þ

þ �ðp1 � k2Þ�ðp2 � k1Þ�: (15)

We immediately see that the T matrix has the form of (6)
that contains two � functions. Therefore, according to our
general argument above based on the cluster decomposi-
tion principle, such a two-photon momentum-based phase
gate cannot be achieved with any system described by the
Hamiltonian (1).

To support the general argument against the momentum-
based photon phase gate, since many of the phase gate
proposals are based on the Kerr nonlinearity [29], we
consider a concrete model of photon transport in a
single-mode waveguide side-coupled to a ring resonator
incorporating Kerr nonlinear media [18] with the following
specific Hamiltonian in (1):

Hint½ck; cyk ; a; ay� ¼ V
Z 1

0
dk½cyk aþ ayck�

þ!ca
yaþ �

2
ayayaa; (16)

where !c is the frequency of the resonator mode. a (ay) is
its annihilation (creation) operator that satisfies the stan-
dard commutation relation ½a; ay� ¼ 1. V is the coupling
constant between the waveguide and the ring resonator and
is related to the decay time of the resonance � ¼ 1=ð�V2Þ.
� describes the strength of Kerr nonlinearity in the ring
resonator. The Hamiltonian (16) can be solved exactly
[18], for example, by the input-output formulism [32] as
adopted for calculating Fock state transport [10]. For
single-photon transport, the S matrix is simply

Spk ¼ k�!c � i=�

k�!c þ i=�
�ðp� kÞ � ei�k�ðp� kÞ; (17)

where the transmission amplitude of a single photon is a
pure phase factor. For two-photon transport, the Smatrix is

Sp1p2k1k2 ¼ S0p1p2k1k2
þ iTp1p2k1k2 ;

where

S0p1p2k1k2
¼ ei�k1ei�k2 ½�ðp1 � k1Þ�ðp2 � k2Þ

þ �ðp1 � k2Þ�ðp2 � k1Þ�;

Tp1p2k1k2 ¼ � 4�

��2
E� 2!c þ 2i=�

E� 2!c � �þ 2i=�

� 1�
�k

2

�
2 �

�
E
2 �!c þ i=�

�
2

� 1�
�p

2

�
2 �

�
E
2 �!c þ i=�

�
2

� �ðE� k1 � k2Þ: (18)

We see that the T matrix indeed has the general form
of (12). It has a two-photon pole of 2!c þ �� 2i=�
in the complex E plane and has its analytic properties
in the complex �k;p plane exactly of the form of (12).

Also, in spite of the common interpretation of such a
Kerr nonlinear interaction as an intensity-dependent phase
shift, the resulting S matrix does not have the form of a
momentum-based phase gate of (15) and does not preserve
the momentum of the individual photon.
As a final remark, the results in this Letter remain valid

even if the localized region has loss, since loss can always
be treated by coupling the region to an additional reservoir.
More fundamentally, the validity of the result depends
upon a causal relation between the output and input. For
a system with gain, such a causal relation may not always
exist, since a system with gain can output a photon in the
absence of photon input. We expect, however, that our
results here should remain valid for any system as long
as there is a causal relation between input and output.
In summary, we have considered a general class of

quantum-integrated systems and provided a set of general
analytic constraints on its two-photon scattering matrix
based on a thought experiment that is closely related to
the cluster decomposition principle in quantum field
theory. Our results indicate that, in general, one cannot
construct nonlinear quantum devices in these systems that
preserve the momenta of single photons. A similar proce-
dure can be generalized to study the analytic properties of
multiple-photon transport as well.
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