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A simple argument shows that negative energy cannot be isolated far away from positive energy in a

conformal field theory and strongly constrains its possible dispersal. This is also required by consistency

with the Bekenstein bound written in terms of the positivity of relative entropy. We prove a new form of

the Bekenstein bound based on the monotonicity of the relative entropy, involving a ‘‘free’’ entropy

enclosed in a region which is highly insensitive to space-time entanglement, and show that it further

improves the negative energy localization bound.

DOI: 10.1103/PhysRevLett.111.221601 PACS numbers: 11.25.Hf, 03.70.+k, 04.62.+v

Introduction.—Because of Lorentz symmetry and the
existence of a fundamental state, energy is always positive
in quantum field theory (QFT) [1]. However, energy den-
sity can take negative values if it is compensated by the
presence of positive energy in other regions of the space. In
fact, in any QFT, there are necessarily some states having
negative energy density [2]. This is a purely quantum
phenomenon which, in general, is not expected to survive
the classical limit. For example, the classical energy den-

sity for a free scalar field T00ðxÞ ¼ 1
2 ½ _�2 þ ðr�Þ2 þ

m2�2� is positive definite. In the process of quantization,
the subtraction of zero point energy renders the energy
density operator indefinite.

Various energy conditions, stating generically the pos-
itivity of some combinations of the stress tensor compo-
nents, have found important applications in classical
gravity. For example, the strong energy condition is related
to the singularity theorem for cosmological solutions [3],
and the null energy condition is an assumption of
Hawking’s area theorem, implying that the black hole
horizon area increases with time [4]. Quantum violation
of the null energy condition is then necessary for black
hole evaporation. Enough negative energy is also required
for the existence of traversable wormholes and time
machines [5]. More recently, in the context of holographic
models, energy conditions on a classical bulk space-time
have been related to properties on the boundary QFT such
as strong subadditivity of entanglement entropy [6] and the
renormalization group irreversibility (c theorem) [7].

In connection with these applications, it is of great
interest to know how much negative energy density quan-
tum mechanics can support in violation of the classical
energy conditions. While an answer to this question, in
general curved space is out of sight, some important
progress has been made in Minkowski space [8].

A quantum energy inequality is generically a bound on a
combination of expectation values of the stress tensor
components weighted by some space-time function.
Several of these bounds have been worked out in the
literature [9] (see also Ref. [8] and references therein).

However, most of the known examples apply only to free
fields, and typical quantum energy inequalities do not
constrain the spatial distribution of negative energy but
assume the form of a bound on the possible duration in
time of the negative energy density at a specific point in
space (see, however, Ref. [10]). We show below that a
simple argument for conformal field theories (CFTs) pro-
vides us with a generic constraint on the spatial distribution
of negative energy. More precisely, negative energy
appears to be confined to live near positive energy and
has to be less disperse than positive energy.
As argued by Ford [11], constraints on the availability

and manipulation of negative energy are necessary for the
validity of the second law of thermodynamics. For ex-
ample, dropping negative energy on a black hole could
reduce its size and entropy without a compensation in the
emitted entropy through increased Hawking radiation.
Interestingly, a thought experiment involving black

holes and the generalized second law (GSL) also gives
place to the Bekenstein bound [12]

SA � 2�REA; (1)

where SA and EA are the entropy and energy of any object
which can be enclosed in a region A of circumscribing
radius R. Since quantum mechanical entropy is positive,
this would mean that energy contained in a region cannot
be negative. Of course, this is not strictly correct, and the
reason is that the quantities involved in Eq. (1) have to be
defined with some care in QFT. For example, entanglement
entropy of vacuum fluctuations across the boundary gives
an infinite contribution to the bare entropy of a region. A
naive interpretation of Eq. (1) also seems to indicate that
there should be a bound on the number of field species,
while this is not implied by the GSL, as was widely
discussed in the literature [13–15].
Awell defined quantum version of the Bekenstein bound

requires that we write the left-hand side of Eq. (1) as a
subtraction �SA ¼ S1A � S0A between the entropy S1A ¼
�tr�1

A log�
1
A of the state of the object �1

A reduced to region
A and the entropy of the vacuum state S0A ¼ �tr�0

A log�
0
A
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in the same region [15,16]. This eliminates the ultraviolet
divergent terms of the entropy which are artificially pro-
duced by localization and also solves the species problem
[13,15]. Additionally, the product 2�ER on the right-hand
side of Eq. (1) has to be written in terms of the modular
Hamiltonian HA ¼ � logð�0

AÞ corresponding to the

reduced density matrix of the vacuum in A. The relation
betweenHA with energy and size is clarified if we take A to
be the half-space x1 > 0. In this case, HA is given by the
generator of boost symmetry inside A, for any QFT and
space-time dimension d,

HA ¼ 2�
Z
x1>0

dd�1xx1T00ðxÞ: (2)

Hence, taking into account expression (2), a natural quan-
tum interpretation of Eq. (1) reads [16]

�SA � �hHAi; (3)

where �hHAi ¼ trð�1
AHAÞ � trð�0

AHAÞ is the variation of

the expectation value of the modular Hamiltonian between
the object state and the vacuum state. In the form (3), the
bound is valid for any region A (not necessarily the half-
space) and for any ‘‘object’’ state �1, due to the positivity
of relative entropy

Sð�1
Aj�0

AÞ¼ trð�1
A log�

1
A��1

A log�
0
AÞ¼�hHAi��SA � 0

(4)

between the object’s state and vacuum state, both reduced
to A. Relative entropy Sð�1j�0Þ is a central quantity in
quantum information theory, which essentially measures
the distinguishability between two states.

The bound (3) is free from divergences and holds univer-
sally. Its validity depends on quantum mechanics and rela-
tivity, and therefore, it is not a new constraint for flat space
physics coming from black holes, as was originally thought.

Equation (3) allows [in contrast to the naive interpreta-
tion of Eq. (1)] for negative values on both sides of the
inequality. This is because the expectation value of Eq. (2)
can be negative for some states. In this case, negative
energy in A must be accompanied by a decrease of the
entanglement entropy of the state with respect to the entan-
glement entropy of the vacuum.

However, the consistency of the inequality (3) and the
one corresponding to the complementary region �A requires
some constraint on the distribution of negative energy, as
was recently suggested [17]. Following this idea, we find
here a new quantum version of the Bekenstein bound [i.e.,
different from Eq. (3)] which is also universally valid and
involves only positive quantities on both sides of the
inequality. This form of the Bekenstein bound improves
our bound on negative energy localization coming purely
from conformal symmetry arguments.

A positive symmetry generator.—In a Lorentz covariant
theory, we can unitarily transform the Hamiltonian with a
boost to any operator of the form P�a

�, with a� a vector in

the future light cone. This immediately tells us that these
operators are positive definite, since they have the same
spectrum as the Hamiltonian. In a CFT, the Lorentz group
is part of a larger group of conformal transformations,
which move the Hamiltonian in a larger cone of positive
operators.
Then, let us make a conformal transformation of the

Hamiltonian. To keep the result as much symmetric as
possible, consider first transforming with the conformal

transformation Î ¼ R � I, where R is a spatial reflection

and I is the coordinate inversion x�
0 ¼ x�=x2. The spatial

reflection R is necessary to make R � I belong to the
conformal group connected to the identity. The composite

coordinate transformation Î�1 � �t � Î, where �t is a time
translation of small amount �t� � ð�t; 0; 0; 0Þ, is, to first
order in �t,

x�
0 ’ x� þ x2�t� � 2x�ð�t�x�Þ: (5)

We can read off the generator G implementing this con-
formal transformation looking at the effect on the points of
the surface x0 ¼ 0

G ¼
Z

dd�1xj ~xj2T00ðxÞ: (6)

Hence, we have for the quantum operators G ¼ Îy �H � Î,
and therefore G is positive definite.
A straightforward examination of the general form of a

conformal generator shows that the most general one writ-
ten only in terms of the energy density (i.e., not involving
the momentum density T0i) that we can get from a confor-
mal transformation of P0 is a linear combination with
positive coefficients of the Hamiltonian and the translates
of G.
Negative energy localization.—The positivity of G

means that a ‘‘moment of inertia’’ of the energy density
is positive. We have for the expectation values in any state

Z
dd�1xj ~x� ~x0j2hT00ðxÞi � 0: (7)

The most constraining bound follows minimizing Eq. (7)
over the position of ~x0.
In order to clarify the meaning of Eq. (7) for the energy

distribution, let us call the total positive energy Eþ and the
absolute value of the negative energy E�

E� ¼
Z

dd�1x�ð�hT00ðxÞiÞjhT00ðxÞij: (8)

Then, we have for the total energy E ¼ Eþ � E� � 0. We
also define the positive and negative energy centers of mass
~x� as

~x�E� ¼
Z

dd�1x ~x�ð�hT00ðxÞiÞjhT00ðxÞij (9)

and the mean square size r� of the positive and negative
distributions as
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ðr�Þ2E� ¼
Z

dd�1xj ~x� ~x�j2�ð�hT00ðxÞiÞjhT00ðxÞij:
(10)

Then, taking into account that the ~x0 which minimizes
Eq. (7) is

~x 0 ¼ Eþ ~xþ � E� ~x�
E

; (11)

we get the following bound:

j ~xþ � ~x�j2 � E
Eþr2þ � E�r2�

EþE�
: (12)

In particular, the intrinsic size of the negative energy
‘‘moment of inertia’’ is bounded by the one of positive
energy

E�r2� � Eþr2þ: (13)

From Eq. (12), positive and negative energies cannot be
separated too much. For example, if we take a small
negative energy density region r� � rþ and a small
amount of negative energy E� � Eþ, we have

j ~xþ � ~x�j &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE=E�Þ

p
rþ.

Positivity from relative entropy.—The connection of the
positivity ofGwith relative entropy comes through the fact
that in CFT, the modular Hamiltonian for a spherical region
in the vacuum state is proportional to the generator of
conformal transformations that keep the sphere fixed [18].
The modular Hamiltonian for a sphere A of radius R is

HA ¼ 2�
Z
j ~xj�R

dd�1x
R2 � j ~xj2

2R
T00ðxÞ; (14)

while for the complementary region �A (the space outsideA),
it is

H �A ¼ 2�
Z
j ~xj�R

dd�1x
j ~xj2 � R2

2R
T00ðxÞ: (15)

For the sake of the argument, let us first think in more
general terms and take an arbitrary region A in a general
QFT, not necessarily a conformal theory. Let us call the
operator

Ĥ A ¼ HA �H �A ¼ � logð�0
AÞ 	 1þ 1 	 log�0

�A
(16)

the full modular Hamiltonian of A. Writing the vacuum
state in Schmidt decomposition across the tensor product
H A 	H �A, a direct calculation shows

Ĥ Aj0i ¼ ðHA �H �AÞj0i ¼ 0: (17)

Let us now consider another global state �1 different
from the vacuum and also a smaller region B 
 A. The
relative entropy between �1 and �0 in a region X is
Sð�1

Xj�0
XÞ ¼ �hHXi � �SX, and it is both positive and

monotonically increasing with the region size [19]. From
monotonicity, we have

�hHAi ��SA � �hHBi ��SB (18)

and also

�hH �Bi � �S �B � �hH �Ai � �S �A: (19)

Property (17) gives hHAi0 ¼ hH �Ai0 and hHBi0 ¼ hH �Bi0.
Since the vacuum state is pure, we also have S0A ¼ S0�A and

S0B ¼ S0�B. Then, adding Eqs. (18) and (19), we get

hĤA � ĤBi1 � S1A � S1B þ S1�B � S1�A � 2SfðA; BÞ: (20)

In this inequality, the vacuum is present only through the
definition of the modular Hamiltonians. The combination
of entropies in the right-hand side, which for later conve-
nience we have called 2SfðA; BÞ, is always positive as a

consequence of the weak monotonicity property SðXÞ þ
SðYÞ � SðX� YÞ þ SðY � XÞ applied to X ¼ A and Y ¼
�B [20]. This inequality is, in turn, a well known direct
consequence of strong subadditivity of the entropy. Hence,

as Eq. (20) is valid for any �1, the difference ĤA � ĤB for
B 
 A is a positive operator [21].
Coming back to the case of spheres in a CFT, we can

choose A to be a sphere of radius R1 and B a concentric
smaller sphere of radius R2, with R2 <R1. Using Eqs. (14)
and (15), we get

�

2
ðR1 � R2Þ½hP0i þ hGi=ðR1R2Þ� � SfðA; BÞ> 0: (21)

Taking the limit R2 ! 0, we recover the positivity of G in
Eq. (6).
A new quantum Bekenstein bound.—Inequality (20) is

our proposal for a new, universally valid, quantum
Bekenstein bound. To see how this compares with the
original formulation (1), let us apply Eq. (20) to the case
of two half-spaces included in one another; i.e., A is the
region x1 > 0, B is given by x1 >L> 0, and the region
A� B is a strip of width L. Using Eq. (2), we get

�LE� SfðA;BÞ
¼ 1

2
½Sðx1 > 0Þ � Sðx1 >LÞ þ Sðx1 <LÞ � Sðx1 < 0Þ�:

(22)

In the classical limit, this strongly resembles the
Bekenstein’s original formulation (1). To have a feeling
of the entropic quantity SfðA; BÞ on the right-hand side,

one can imagine evaluating it for a thermal gas at high
temperature. Then, while most of the contributions of the
entanglement around the boundaries cancel out in the
combination, SfðA; BÞ will capture exactly the extensive

entropy of the gas inside A but outside B. This is the reason
we have inserted a factor 2 in our definition of SfðA; BÞ in
Eq. (20). Note also that for a pure global state, SðXÞ ¼
Sð �XÞ and SfðA; BÞ � 0. Then, SfðA; BÞ does not capture the
entropy in the strip A� B produced by an entangled pair of
particles, one of which is in A� B and the other outside it.
Hence, we are led to interpret the quantity SfðA; BÞ, to a
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certain extent, as a ‘‘free’’ (or ‘‘global’’) entropy located in
between the boundaries of A and B.

In this sense, it is clarifying to write the entropy of the
global state as coming from partial tracing over a hidden
sector @which is used to purify it, i.e., �1 ¼ tr@jc ihc j, for
some vector jc i in H 	 @. Using this representation, we
can write

SfðA; BÞ ¼ IðA;@Þ � IðB;@Þ
2

; (23)

where IðX; YÞ ¼ SðXÞ þ SðYÞ � SðX [ YÞ is the mutual
information between X and Y. Hence, SfðA; BÞ is approxi-
mately extensive and depends only on A� B to the extent
that IðX;@Þ is approximately extensive for spatial regions
X. This representation also shows that SfðA; BÞ is in fact

monotonically increasing with the size of A� B because
mutual information is a monotonically increasing quantity.
Moreover, it trivially satisfies a partial form of extensivity:
If C � B, we have SfðA;CÞ ¼ SfðA; BÞ þ SfðB;CÞ.

While the general aspect of Eq. (22) is similar to
Bekenstein’s original formulation, there are also some
interesting differences. For example, the striplike region
now has L as a minimal size of the region rather than the
circumscribing diameter in the original formulation of the
Bekenstein bound (in this respect, our bound is similar to
the proposal of Ref. [22]). Aditionally, in the left-hand
side, we now have the global energy E instead of a measure
of the energy in a region.

The new formulation (22) [or, more generally, Eq. (20)]
has also some remarkable differences with respect to the
first quantum version (3) of the Bekenstein bound. First,
Eq. (22) is about energy and entropies in one state, rather
than the difference between two states, as in Eq. (3).
Mathematically, Eq. (22) comes from a very different
inequality: The monotonicity of relative entropy, rather
than from the positivity of relative entropy, as was the
case of Eq. (3). Finally, in contrast to Eq. (3), both sides
of the new inequality are now positive.

Entropy and negative energy distribution.—We now use
again the inequality (20) for two spheres in a CFT, but since
we want to have a bound in terms of the operator G alone,
and not containing a contribution of the Hamiltonian as in
Eq. (21), we are forced to use spheres located at different
times. We take as A a sphere of radius R1 at time t ¼ �R1,
centered at the spatial origin, and as B, another sphere of
radius R2 < R1 centered at the origin but lying at time t ¼
�R2 (see Fig. 1). Hence, A and B lie in the past light cone.

The conformal current that gives the conformal genera-

tor corresponding to ĤA is

J
�
A ¼ 2�T��x� þ T��

�
c�x�x� � 1

2
c�x

�x�

�
(24)

with c� � ð2�=R1; 0; . . . ; 0Þ. The current J�B follows from

J
�
A by replacing R1 by R2. Hence, in this case, the bound is
written as

hĤA � ĤBi ¼
Z

dd�1xðJ0A � J0BÞ

¼ �

�
1

R2

� 1

R1

�Z
j ~xj2hT00ðxÞi � 2SfðA; BÞ:

(25)

In particular, choosing the center of spatial coordinates at
the point ~x0 in Eq. (11), we get

ðEþr2þ � E�r2�Þ � EþE�
E

j ~xþ � ~x�j2

� max
R1;R2;R1>R2

�
2R1R2

ðR1 � R2Þ�SfðR1; R2Þ
�
: (26)

Therefore, entropy makes the localization bound more
restrictive. This is quite natural from the point of view of
the original motivation on negative energy bounds based
on the second law [11]: A pure state with negative energy
which merges with a thermal state decreases its energy and
consequently the phase space available, possibly reducing
the entropy and violating the second law. In this sense,
matter with negative energy but positive entropy could
only worsen the problem, since the second law would be
violated by a larger amount. However, the entanglement
entropy between the negative energy source and the posi-
tive energy reservoir is clearly not an additional problem,
since this entropy disappears once they have merged; in
other terms, this entanglement entropy is not considered in
the balance of entropy for the global initial and final states
in the second law. This is reflected in that the specific
entropic quantity that enters the bound does not feel the
spatial entanglement.
As a final comment, the existence of a quantum

Bekenstein bound based on the monotonicity of relative
entropy suggests that this property is important for the
validity of the GSL. In fact, such a connection has been
pointed out in the literature [23].
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FIG. 1. Two spatial spheres A of radius R1 and B of radius
R2 located on the past light cone. SfðA; BÞ is a measure of

entropy crossing the null cone in between the boundaries of
A and B.
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