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We investigate the near-critical dynamics of atomic density fluctuations in the nonequilibrium self-

organization transition of an optically driven quantum gas coupled to a single mode of a cavity. In this

system cavity-mediated long-range interactions between atoms, tunable by the drive strength, lead to

softening of an excitation mode recently observed in experiments. This phenomenon has previously been

studied within a two-mode approximation for the collective motional degrees of freedom of the atomic

condensate, which results in an effective open-system Dicke model. Here, including the full spectrum of

atomic modes we find a finite lifetime for a rotonlike mode in the Bogoliubov excitation spectrum that is

strongly pump dependent. The corresponding decay rate and critical exponents for the phase transition are

calculated explaining the nonmonotonic pump-dependent atomic damping rate observed in recent

experiments. We compute the near-critical behavior of the intracavity field fluctuations that has been

previously shown to be enhanced with respect to the equilibrium Dicke model in a two-mode approxi-

mation. We highlight the role of the finite size of the system in the suppression of it below the expectations

of the open Dicke model.
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Introduction.—Quantum matter coupled to enhanced
optical fields in confined geometries such as resonators
and waveguides offer a promising platform to study quan-
tum dynamics and phase transitions far from equilibrium
[1–4]. Excitations of such systems are typically hybrid
quasiparticles (polaritons) inheriting long-range coherence
properties of photons and strong interactions derived from
its material excitations in a controllable proportion. A
crucial feature of these systems is that the fundamental
light-matter interaction is particle nonconserving [5] and
the description of the system benefits immensely from an
open quantum system approach. Unavoidable photon loss
together with the possibility of external driving renders
these systems open quantum systems, which can be studied
in a nonequilibrium steady state. Phase transitions in quan-
tum optics are not new: the laser phase transition (see
Ref. [6] and references therein), the Dicke superradiance
transition [7–12], and more recently weakly interacting
exciton polariton condensates [13] have been a cornerstone
of quantum optics studied extensively with the stochastic
methods of open quantum systems. A new class of inter-
acting light-matter systems attracting recent attention is
systems obtained by scaling up single cavity QED systems
to lattices to simulate various Hubbard and spin models,
where strong interactions of polaritonic quasiparticles lead
to the possibility of studying genuine quantum many-body
phenomena with photons [1–4].

While initially these systems were studied from the per-
spective of interacting photons, i.e., quantum nonlinear op-
tics [14–17], a new aspect that has been pointed out recently
in severalworks ismediated long-range interactions between
material excitations, leading to many body phases such as a

superradiant ferroelectric phase [5] and spin glasses [18,19]
through cavity mediated long-range interactions. These two
views are the flip side of the same coin and appear depending
on whether photons or material excitations are integrated out
in a system of mixed particles (see, e.g., Ref. [5]).
Recent work indicates that these aspects arise also for

optically driven atoms coupled to cavity modes [20], which
were first realized experimentally for thermal atoms [21,22],
then for a similar system, a Bose-Einstein condensate (BEC)
in afiber-based cavity [23], and recentlywith aBose-Einstein
condensate in a high-finesse optical cavity [24–26]. The
latter is investigated here. In the present work, we first derive
an effective Hamiltonian for the atomic subsystem by adia-
batically eliminating the cavity field. We show that this
results in an effective photon-mediated long-range interac-
tion that can be expressed in terms of the photon Green’s
function. We then derive the full excitation spectrum of the
condensate below the self-organization threshold, which dis-
plays a rotonlike softening at a finitemomentum, as observed
in recent experiments [25]. Taking into account finite-size
corrections, we show that the dynamics close to the critical
point can be described by aCaldeira-Leggettmodel [27]with
a strongly pump-dependent spectral function resulting in a
softening frequency for the rotonlike mode. Photon-
mediated interactions lead to an effective damping of the
rotonlike mode that displays a nonmonotonic dependence on
the pump strength. Most notably, we find that the s-wave
interaction is a relevant interaction that determines the nature
of the dissipative dynamics near the critical point. Finally, we
go beyond the adiabatic approximation and, by taking into
account the retarded photon-mediated interactions, we
calculate the photon spectrum.
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Model.—We consider a Bose-Einstein condensate of
length D consisting of N atoms with an internal optical
transition !a. This atomic condensate is coupled to a high
finesse optical resonator of length L, mode frequencies

!ðmÞ
c , and decay rates �m, and is driven by a laser with

frequency !p from a direction perpendicular to the cavity

axis [see Fig. 1(a)]. We will focus here on the dispersive
regime of driving (j�aj ¼ j!p �!aj � �a, where �a is

the atomic linewidth). The Hamiltonian of the system in
the rotating frame of the pump can be written as

Ĥ ¼ �@
X
m

�ðmÞ
c âymâm þ

Z
dx�̂yðxÞ

��@
2

2m

d2

dx2

þ @
jÊþðxÞj2

�a

þ VtrapðxÞ
�
�̂ðxÞ

þ @
U

2

Z
dx�̂yðxÞ�̂yðxÞ�̂ðxÞ�̂ðxÞ; (1)

where �ðmÞ
c ¼ !p �!ðmÞ

c is the detuning between the

pump and the mth mode of the cavity, ÊþðxÞ ¼
g0
P

m’
ðmÞ
c ðxÞâm þ�p is the positive frequency component

of the total electric field at point x times the dipole
moment of the atom. The positive rotating component
of the electric field at point x is composed of a contribu-
tion from the cavity ’cðxÞ and a contribution from a
coherent pump beam directed perpendicular to the cavity
axis with a Rabi frequency �p, whose transverse profile

is assumed to be uniform across the condensate (typically

it is a Gaussian with large beam waist). Here g0 / L�1=2

is the atom-cavity coupling strength and ’ðmÞ
c ðxÞ is the

mth cavity mode function. U is the strength of the s-wave
interaction between the atoms. We assume D � L as for
the experimental conditions [24,25], imposed by the ex-
ternal trapping potential VtrapðxÞ, and expand the field

operator as �̂ðxÞ ¼ P
nĉn�nðxÞ where �nðxÞ are the

eigenstates of the single particle Hamiltonian with corre-
sponding confinement energies @!n. For a high-finesse
cavity, the above model was shown to reduce to the open
Dicke model [24,28] by keeping one cavity mode
’cðxÞ ¼ sinGx at the cavity frequency !G closest to the
pump frequency !p and two atomic modes: the lowest

energy mode �0ðxÞ ¼ 1=
ffiffiffiffi
D

p
of the trap (of uniform

density for our choice of the confinement potential
[29]), and the mode �GðxÞ with momentum being closest
to cavity wave vector G. As a function of the pump Rabi
frequency �p, this model displays a phase transition from

a normal phase (hc0cyGi ¼ haGi ¼ 0) to a superradiant

phase (hc0cyGi � 0, haGi � 0) with an atomic density

modulation, observed in experiments [24].
The open nature of the system due to the leakage of

cavity photons leads to a dissipative dynamics of the
collective excitations of the system. A linearized fluctua-
tion analysis [28,30,31] shows that in the two-mode
model, the frequency of one of the collective light-matter
excitations goes to zero at the critical pump strength.
Such a roton-type mode softening was observed in recent
experiments [25] through a variant of Bragg spectroscopy
on a single finite-momentum mode. The signature of this
transition on various observables of the photons leaking
out of the cavity was analyzed in Ref. [31], which in
particular revealed that the output photon flux diverges at
the critical pump strength with an exponent that is differ-
ent than that of the equilibrium counterpart of the Dicke
model [31,32]. This observation was attributed later [33]
to an effective temperature [34,35] generated for the low-
energy degrees of freedom due to coupling of the cavity
mode to vacuum fluctuations. The emerging picture is
discussed in Fig. 1. The fluctuations that trigger the
instability are atomic density fluctuations generated by
long-range photon-mediated interactions. The effect of
vacuum fluctuations coupled to the cavity mode is trans-
ferred to the atoms via the atom-light coupling and gen-
erates an effective low-energy temperature in the steady
state. The phenomenology of the open Dicke model is
then similar to that of the finite temperature Dicke model
in so far as the low-energy degrees of freedom are
concerned [33].

FIG. 1 (color online). (a) Schematic of the setup we consider.
(b) An emerging picture showing the equilibrium phase transi-
tion point (solid black dot) and the open system phase transition
boundary (black line) between the two phases.
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Recent experiments [26] monitoring the photon number
fluctuations in real time however find that the scaling of the
diverging photon fluctuations close to the phase transition
cannot be understood by cavity dissipation alone. A careful
analysis revealed that theremust be a residual atomic damp-
ing of unknown origin that has a highly nontrivial depen-
dence on the pump strength. Here we first explain the origin
of this atomic dissipation departing from the two-mode
picture underlying the Dicke model and taking into account
the full spectrum of collective atomic excitations.

Adiabatic elimination.—Under typical experimental con-
ditions [25], the time scale of the cavity dynamics of the
cavity modes, given by the corresponding decay rates �m, is
much faster than that of the atomic dynamics (given by the
recoil frequency !r ¼ @G2=2m). In this regime, the cavity
field operator can be adiabatically eliminated [25] and the
Hamiltonian in Eq. (1) becomes only atomic with a nonlocal
potential UNLðx; x0Þ ¼ 2@ðg0�p=�aÞ2 Re½Gphðx; x0;!pÞ�,
where

Gphðx; x0;!Þ ¼ X
m

’ðmÞ
c ðxÞ’ðmÞ�

c ðx0Þ
!�!ðmÞ

c þ i�m

(2)

is the photon Green’s function. The form of this Hamiltonian
transparently illustrates the presence of long-range interac-
tions between the atoms that are mediated by the photons.
[36]. For the single cavity mode case, in the thermodynamic
limit (N, L,D ! 1 keeping densityN=D and the ratioL=D
constant), there is one mode at a finite momentum G in
the condensate excitation spectrum that softens first as
the pump strength approaches its critical value.
A two-mode description then captures the frequency

of this rotonlike mode [25,28,31]�G ¼ !0
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�2=�2

cÞ
p

,

where !0
G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!Gð!G þ 2ðNU=DÞÞp
, !G � !nG , �2¼

�2�cðg0�p=�aÞ2=ð�2
cþ�2Þ, and Tmn ¼ R

cav dx�nðxÞ�
�mðxÞ’cðxÞ. �c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!02

G=ð2N!GT
2
0GÞ

q
is the critical value

of the pump-dependent parameter �. We are rather inter-
ested in the large but finite N, L, D regime,
where the finite size effects take place. In this parameter
regime, the rotonlike mode (with momentum ’ G) gets
coupled to other modes and acquires a finite lifetime due to
this coupling. The dynamics of thismode can be described by
a Caldeira-Leggett model

�Ĥ

@
¼ �G�b̂

y
G�b̂G þ X

n�G

�n�b̂
y
n�b̂n

� ð�b̂G þ �b̂yGÞ
X
n�G

gnð�b̂n þ �b̂yn Þ; (3)

where the system frequency given by �G goes to zero

as j�� �cj12 and the bath dispersion is given by

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n � 2!nN�2ðT2
0n � ðU=D�2ÞÞ

q
, shown in Fig. 2.

Here �b̂ represents atomic fluctuations after a
Bogoliubov transformation. We note that the bath coupling

gn / j�� �cj�ð1=4Þ is stronglypumpdependent aswell.The

resulting effective atomic bath coupling to the rotonlike
mode has a low-energy spectral density that is super-Ohmic
Jð!Þ � ð1=DÞ!3 [40]. As a result of the coupling to the full
spectrumof atomicmodes, the characteristic frequencyof the
rotonlike mode acquires a real correction and an imaginary
part, the latter yielding the lifetime of the rotonlikemode that
is acquired due to the finite size of the system. To the lowest
order in 1=D we get

!rot ¼ 	�G � i

2
A�4�2

G; (4)

where A is a constant ofOð1=DÞ. The characteristic frequen-
cies are shown in Fig. 3where the real part and imaginary part

have critical behavior given by j�� �cj1=2 and j�� �cj,
respectively. The dynamics near the critical point is hence
underdamped. The effective atomic dissipation rate is found
to have a nonmonotonic dependence on the pump�, as shown
in Fig. 3. Hence the origin of the additional atomic damping
that was found in recent experiments [26] is finite-size in-
duced photon-mediated coupling between atomic modes.
Beyond the adiabatic limit.—To access output photon

observables, we start from the original Hamiltonian
[Eq. (1)] and expand both the light and matter parts in

terms of mean-field plus linear fluctuations (�̂ ¼
��þ ��̂, â ¼ �aþ �â). This has two effects: the excita-
tions are now collective light-matter excitations and the
photon-mediated interactions are retarded. By linearizing
Eq. (1) in photonic and atomic fluctuations we obtain

�Ĥ

@
¼ ��c�â

y�âþ!0
G�d̂

y
G�d̂G

þ �Gð�d̂G þ �d̂yGÞð�âþ �âyÞ
þ X

n�G

�nð�d̂n þ �d̂yn Þð�âþ �âyÞ

þ X
n�G

!0
n�d̂

y
n�d̂n þ

X
m

�mð�âyr̂m þ r̂ym�âÞ

þX
m

ð�m �!pÞr̂ymr̂m; (5)

FIG. 2 (color online). The dispersion relation of the atomic
modes for a finite value of pump is shown by dots. The solid
line is the standard Bogoliubov spectrum for a BEC, at vanishing
pump strength. The rotonlike mode ultimately goes soft at the
critical value of pump. The nearbymodes are distorted (compared
to the unpumped case), which we show to be a finite-size effect.
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where �n ¼ ðg0�p=�aÞ
ffiffiffiffi
N

p
Ton

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!n=!

0
n

p
with !0

n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n þ 2!nðNU=DÞp
. Here,�d̂ represents the atomic fluctua-

tions (after aBogoliubov transformation) and�â represents the
photonic fluctuations. The operators r̂m are used for the con-
tinuum reservoir of photons outside the cavity, �m are the
corresponding reservoir mode frequencies, and �m are the
coupling to the cavity photons. We treat this coupling in
the usual Markov approximation where the cavity decay rate
becomes � ¼ 	j�ð!cÞj2�ð!cÞ with � being the density of
reservoir states [41].We solve the coupled equations ofmotion
in the Fourier domain by integrating out the atomic and pho-
tonic reservoir degrees of freedom. An analytic expression for
photonflux can be obtainedbut is rather lengthy. In the absence
of the atomic bath, the obtained outcoupled photon flux is

h�ây�âi ¼ 1

�2�c!
0
G

�2
G

½1� �2
G

�2
c
�
; (6)

where the critical point is given by �c ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!0

G=��cÞð�2 þ �2
cÞ

q
. This generalizes the result

obtained in Ref. [31] to the case U � 0. Including the full
spectrum of atomic modes results in a subdominant contribu-
tion of order j�G � �cj�3 such that the critical point and
critical exponent remain the same. Needless to say, the highly
nontrivial pump dependence of the atomic dissipation channel
is crucial to obtain this result.

It is worthwhile to look at the frequency resolved spec-
trum of the flux shown in Fig. 4, given by S½!� ¼R1
�1 d
e�i!
h�âyð
Þ�âð0Þi. The two peaks correspond to

the broadened polaritonic normal soft modes of the system,
which can be described by a two-impurity Caldeira-Leggett
model [42,43] coupled to a common bath through a pump-
dependent coupling (two other peaks corresponding to the
nonsoft modes are not shown here). As pump approaches
the critical value, the two peaks move inwards towards zero

frequency, their peak frequencies scaling as j�� �cj1=2
and theirwidths as j�� �cj. Very close to the critical value,
the two peaks merge. At that point, the excitation frequency
is purely imaginary, given to lowest order by

!pol ��i
�2

c þ �2

2�

�
1� �2

G

�2
c

�
(7)

in a ð1� �2
G=�

2
cÞ expansion. This is a unique feature of the

inclusion of the retarded photon-mediated interactions: the
existence of a narrow window around the critical point of
overdamped excitation dynamics. The real part vanishes at
a bifurcation point for slightly lower pump values than the
critical pump (this was also observed in the two-mode case
in Refs. [30,31,44]). It turns out that in a small ð1� �2

G=�
2
cÞ

expansion the atomic bath plays a role at the third order
which is consistent with the observation that the critical
point and exponent due to the addition of the atomic bath
remain unchanged, although there is departure away from
the critical point. FromFig. 4(b) it is clear that the collective
noise (due to atoms and photons) results in a suppression of
photon flux, consistent with observations of recent experi-
ment [26]. We note that the suppression of flux observed
here is specific to the parameter values used and may turn
into enhancement in other regimes.
Conclusion.—In this Letter, we studied the critical dy-

namics of density fluctuations of a driven condensate in an
optical cavity by taking into account the full spectrum of

FIG. 4 (color online). (a) A 3D visualization of photon spec-
trum is shown above. It can be seen that the peaks move closer to
the origin as pump increases and the peak positions move
towards the origin as j�� �cj1=2 and their width becomes
smaller (i.e., peaks become sharper) as j�� �cj. (b) Photon
flux as a function of pump in the two-mode and full atomic bath
picture. We find suppression due to atomic bath consistent with a
recent experiment [26].

FIG. 3 (color online). Damping rate � ¼ �Im½!rot� as a func-
tion of the pump strength is shown in black (solid line). The
damping rate vanishes with a critical exponent of 1 and the
excitation frequency is shown in red (dashed), which vanishes
with exponent 1=2.
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collective motional modes of the condensate. We show that
the cavity induces long-range two-body interactions between
the atoms of a condensate and that the interaction is propor-
tional to the photon Green’s function of the cavity. In the
adiabatic limit where the cavity field is eliminated, this leads
to a softening of a rotonlike collective mode recently
observed in experiments. Going beyond the two-mode
(Dicke limit) description and including the full spectrum of
atomicmodes,we show that the rotonlikemode of the system
couples to other atomicmodes in a large but finite system and
hence acquires a finite lifetime that nontrivially depends on
the pump strength. We find that the collisional s-wave inter-
action is a relevant perturbation, which determines the nature
of critical dynamics. Because both finite size and interactions
are relevant to recent experiments,we believe that anab initio
description of the atomic dynamics is crucial. Indeed, our
results shed light on the strongly pump-dependent atomic
damping observed in recent experiments [26] that lead to the
suppression of subthreshold cavity field fluctuations below
what is expected from cavity leakage alone [45].

We thank David Huse, Marco Schiro, and Emanuele
Dalla Torre for useful discussions. This work was sup-
ported by the U.S. National Science Foundation through
NSF CAREER Grant No. DMR-1151810 and by the Swiss
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