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We show that finite systems with conical intersections can exhibit spontaneous symmetry breaking

which manifests itself in spatial localization of eigenstates. This localization has a geometric phase origin

and is robust against variation of model parameters. The transition between localized and delocalized

eigenstate regimes resembles a continuous phase transition. The localization slows down the low-energy

quantum nuclear dynamics at low temperatures.
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A conical intersection (CI) of several electronic states is
one of the most common structural motifs in molecules
where the Born–Oppenheimer (BO) approximation breaks
down [1,2]. Because of the energetic proximity of potential
energy surfaces, nuclear motion near the CI triggers elec-
tronic transitions. These transitions are not the only effect
that CIs produce: parametric evolution of the eigenstates of
the electronic Hamiltonian along a closed path encircling a
locus of the CI gives rise to an extra (�1) phase factor
accumulated by the intersecting electronic eigenstates
[3,4]. This additional phase, termed the geometric phase
(GP) [4–6] does not depend on a size or shape of the
encircling loop, provided that no other degeneracies are
enclosed. The GP also affects the nuclear motion, because
changing the sign of the electronic wave function will
necessarily change the sign of the nuclear wave function
in order for the total wave function to be single valued. GP
effects were found to be crucial for modeling vibrational
spectra of Jahn-Teller distorted compounds (e.g., Na3)
[7–9] and cross sections in low-energy atom-molecule
reactive scattering (e.g., Hþ O2) [10–14].

In this Letter, we report yet another remarkable GP
effect: spontaneous symmetry breaking that manifests
itself in spatial localization of low-energy eigenstates. It
is common in quantum mechanics that low-lying eigen-
states are delocalized over all energetically accessible
regions. Delocalization lowers the kinetic energy of a
system and, if it is not counteracted by the potential, lowers
the total energy. However, in the presence of GP, some
eigenstates are found to be immune to delocalization even
though the potential does not counteract. Although this
localization can be seen as a consequence of destructive
interference between different tunneling paths connecting
energetically accessible regions in systems with CI
[15–19], we show that the destructive interference alone
is not sufficient for the localization.

We consider a generic two-state (‘‘full’’) model exhib-
iting CI along with its two single-surface approximations:
BO and BOþ GP. The BO model neglects the GP

completely, whereas the BOþ GP model uses a position-

dependent phase factor ei�ðxÞ that changes the sign of a
nuclear wave function upon encircling the CI [5,20]. The
two-state model includes both GP and nonadiabatic tran-
sitions; therefore, comparing results from all three models
allows us to isolate and quantify pure GP effects.
As we show below, the spinor symmetry of the full

model is preserved by the BOþ GP model but is lost in
the BO approximation. The spinor symmetry gives rise to
degeneracy of the ground state for some values of model
parameters and thus produces the quantum phase transition
[21]. Small variations of parameters can lift the degener-
acy, but associated localization does not disappear. Further
parameter variation eventually destroys the localization,
and critical values for the parameters form a phase dia-
gram. The phase diagram qualitatively explains observed
differences in nuclear dynamics at low energies with and
without GP.
Model.—In a diabatic representation, the Hamiltonian of

the two-state CI model is

Ĥ ¼ T̂N12 þ V11 V12

V12 V22

� �
; (1)

where T̂N is the nuclear kinetic energy operator, V11 and
V22 are diabatic potentials represented by identical 2D

(a) (b)

FIG. 1 (color online). (a) Diabatic potentials (red dashed lines)
V11 and V22, and the lowest adiabatic potential W� (blue solid
line), in y ¼ 0 section. The thick black line separates donor and
acceptor wells. (b) The lowest adiabatic potential W� with two
symmetric transition states labeled as TS1 and TS2.
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parabolas shifted in space and in energy [Fig. 1(a)] and
coupled by the V12 potential (@ ¼ 1)

V11 ¼ !2
1

2

�
xþ a

2

�
2 þ!2

2

2
y2 þ�=2; V12 ¼ cy; (2)

V22 ¼ !2
1
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�
x� a

2

�
2 þ!2

2

2
y2 � �=2: (3)

In spite of its simplicity, N-dimensional generalization of
this 2D model was successfully applied to modeling vi-
bronic spectra of real molecules with CIs [22,23].
Diagonalization of the two-state potential matrix in
Eq. (1) gives the following adiabatic potentials:

W� ¼ 1

2
ðV11 þ V22Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV11 � V22Þ2 þ 4V2

12

q
: (4)

We focus on a lower-surface Hamiltonian Ĥ� ¼ P̂2=2þ
W� [Figs. 1(a) and 1(b)], which governs the dynamics in
the BO and BOþ GP approximations. The BO and BOþ
GP models differ in form of P̂: P̂BO ¼ �ir for the BO

model [ĤBO� ¼ Ĥ�ðP̂BOÞ], and P̂GP ¼ �ie�i�rei� �
�irþr� for the BOþ GP model [ĤGP� ¼ Ĥ�ðP̂GPÞ].
The latter P̂GP identity shows that one can still work with
single-valued wave functions even in the presence of GP at
the expense of an extra term in the definition of the
canonical momentum [24]. � ¼ �ðx; yÞ is defined as the
mixing angle of the two-state unitary transformation that
diagonalizes the potential matrix in Eq. (1) [25],

�ðx; yÞ ¼ 1

2
arctan

2V12

V11 � V22

¼ 1

2
arctan

�y

xþ b
; (5)

where b ¼ �=ð!2
1aÞ is the x coordinate of the CI point, and

� ¼ 2c=!2
1a is dimensionless coupling strength.

Symmetry and spectrum degeneracies.—For � ¼ 0 and
arbitrary values of other parameters, the potential W�
possesses C2v symmetry, which is also the symmetry of

the BO Hamiltonian ĤBO� . In contrast, ĤGP� and Ĥ have the

double group symmetry Cy
2v [26] that adds to the C2v

elements an extra rotation by 2� (R). R acts nontrivially

only on the double-valued eigenfunctions of ĤGP� and two-

component eigenfunctions of Ĥ. Cy
2v is a non-Abelian

group, and all eigenfunctions of ĤGP� and Ĥ transform
according to its two-dimensional irreducible spinor repre-
sentation E1=2, giving rise to a doubly degenerate spec-

trum. By allowing� � 0, we lower the symmetry to Cs for

ĤBO� and toCy
s for Ĥ

GP� and Ĥ. BothCs andC
y
s are Abelian,

and thus, there are no systematic degeneracies in the
spectra of all three Hamiltonians any more.
Correspondingly, the doubly degenerate eigenvalues of

ĤGP� and Ĥ split as E1=2 ¼ B1 � B2 [27] .

Eigenstate localization and symmetry breaking.—
Ground-state degeneracy in the BOþ GP and full mod-
els leads to the spontaneous localization of the lowest

eigenstates that has no analogs in the BO model. It is well

known that the eigenstates of ĤBO� with the symmetric
arrangement of wells (� ¼ 0) are delocalized over the
wells [28]. For high barriers, the low-lying eigenstates of

ĤBO� have a group structure where states within a group
are separated by a small energy gap, while different
groups are separated by large energy gaps. The ground
and first excited states �BO

1;2 of HBO� are delocalized

functions corresponding to the lowest energy group. By
rotating within the �BO

1;2 subspace, one can obtain the

function � ¼ �BO
1 sin�þ�BO

2 cos� that is localized in

the donor well. However, � is not an eigenfunction of
HBO� , and thus, it will escape from the donor well within a
time period inversely proportional to the energy gap
between the �BO

1;2 eigenenergies.

To consider the full diabatic problem [Eq. (1)], we
introduce the lowest eigenstates �D and �A of the donor

and acceptor Hamiltonians ĤD ¼ T̂N þ V11 and ĤA ¼
T̂N þ V22, respectively. Within the full problem, vectors
ð�D; 0Þy and ð0;�AÞy cannot interact via V12�x because
both �D and �A are even with respect to y ! �y, while
V12 is odd. Therefore, the true lowest eigenfunctions of the
full problem �full

1 and �full
2 are dominated by the vectors

ð�D; 0Þy and ð0;�AÞy, while the admixture of higher

eigenfunctions of ĤD and ĤA is suppressed by an energy
gap of at least !2. Owing to the degeneracy of the full
problem spectrum, one can always rotate�full

1;2 into a pair of

localized eigenfunctions �full
D;A that are close to the

ð�D; 0Þy and ð0;�AÞy states. Similarly, rotating the lowest

doublet components �GP
1;2 of ĤGP� also produces spatially

localized eigenstates �GP
D;A. Thus, the spectral degeneracy

leads to localization of the lowest eigenstates and sponta-
neous symmetry breaking in both full and BOþ GP
models.
In the � � 0 case, although the degeneracy of the

spectra in the full and BOþ GP models is lifted, the
localization of low-lying states survives in both models
provided that � is not ‘‘too large’’ (�<!i). For the full
model, � � 0 is equivalent to introducing �z�=2 pertur-
bation to the � ¼ 0 Hamiltonian. This diagonal perturba-
tion does not couple the localized eigenstates �full

D;A to the

first order, but only lifts the degeneracy by changing ener-
gies of these states. Higher-order contributions from states
other than �full

D;A are energetically suppressed. In the GPþ
BOmodel, we start with a localized state of the donor well
for the � ¼ 0 problem �GP

D and consider its dynamics in
the � � 0 case. Two minimal energy paths to the acceptor
minimum are available for �GP

D via transition states TS1
and TS2 [Fig. 1(b)]. Phases acquired by the wave packet

along these paths are close to ei�=2 ¼ i and e�i�=2 ¼ �i.
Therefore, the interference between the parts of the wave
packet that take different paths is destructive and leads to
forming a nodal y ¼ 0 line in the wave packet [15,29].
A wave function with an extra node has higher energy
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(approximately by !2), and thus, the �GP
D escape from the

donor well is energetically suppressed when �<!2.
These qualitative considerations break down for suffi-

ciently large �; therefore, we perform numerical simula-
tions within the BOþ GP approximation to find critical
values of� when localization disappears. For simplicity of
the subsequent discussion, only the isotropic case !1 ¼
!2 ¼ 1 will be considered, while its generalization for the
!1 � !2 case is straightforward. Also, instead of an ab-
solute value of the coupling c, we use the dimensionless
parameter �.

We separate donor and acceptor wells [Fig. 1(a)] using a

projector operator P̂ðx; yÞ that equals 1 (0) if (x, y) is in
the donor (acceptor) well. For an eigenstate �, the aver-

age value P ¼ h�jP̂j�i provides a quantitative measure
of the � localization. In a doubly degenerate case
� ¼ �1 cos�þ�2 sin�, where �1;2 are orthogonal

components of the eigensubspace, we define the � local-
ization as max�P.

Figure 2(a) presents the delocalization degree 1� P of
the first excited state as a function of � [30]. The delocal-
ization quickly rises to 1 when � (for a given �) passes
through a certain critical value��ð�Þ. This behavior can be
explained by considering the eigenvalue correlation dia-
gram [Fig. 2(b)]: at �� the first excited state exhibits an
avoided crossing with the second excited state of the same
symmetry but localized in the acceptor well. The donor
state restores its localization beyond the critical point when
it becomes the second excited state. However, after that
point its energy grows beyond the region relevant to low-
energy dynamics.
Based on the shape of the 1� P curves [Fig. 2(a)], we

propose two definitions of��: (1) the inflection point of the
1� P curve and (2) the intersection of the tangent line at
the inflection point with the � axis. Since we consider
finite systems where true continuous phase transitions
between localized and delocalized states are impossible,
these two definitions of �� give different estimates for
transition points. We put both critical values of �� for
different � on the same plot and obtain the phase diagram

for ĤGP� in Fig. 3. Colored areas correspond to a range of
couplings (�) and acceptor shifts (�) for which the
donor—despite unfavorable energetics—still supports the
localized eigenstate.
Nuclear dynamics.—To elucidate the impact of GP and

localization on the dynamics, we simulate the probability

transfer PðtÞ ¼ trf�̂ðtÞP̂g starting from the Boltzmann den-

sity of the donor Hamiltonian ĤD at temperature T (simu-
lation details are given in Ref. [31]). The localization of
eigenstates in the presence of GP has a large impact on the
nuclear dynamics. At T ¼ 0, in the presence of the local-

ization in ĤGP� , our initial state can be close to stationary by

almost coinciding with a single eigenstate of ĤGP� . In
contrast, in the BO model where the localization is
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FIG. 2 (color online). (a) Delocalization degree (1� P) for the
ĤGP� first excited state as a function of�. Crosses mark inflection
points, dashed lines are tangent lines at the inflection points.
Filled circles separate the regions of slow and fast growth of P.
(b) Correlation diagram for low-energy eigenstates of ĤGP� . The
cross marks the energy gap minimum of two states in the avoided
crossing and corresponds to the inflection point of the 1� P
(� ¼ 2=3) curve in (a).
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lines with the � axis (green-gray boundary). Black dots (a)–(d)
mark the parameter values for which nuclear dynamics is pre-
sented in Figs. 4(a)–4(d).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  40  80  120  160

P
(t

)

γ = 0.1
∆ = 0.0

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  40  80  120  160

γ = 0.1
∆ = 1.0

(b)

1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40

P
(t

)

t

γ = 1.0
∆ = 0.0

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40

t

γ = 1.0
∆ = 1.0

(d)

FIG. 4 (color online). Population transfer dynamics for T ¼ 0:
the full model (red line), the BOþ GP model (blue line), the BO
model (black line).
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impossible, the initial wave packet is predominantly a
superposition of two lowest BO eigenstates. Indeed, at � ¼
0:1 and � ¼ 0 [point (a) in Fig. 3] both full and BOþ GP
models demonstrate complete suppression of the tunnel-
ing, while the BO model produces unit size coherent
oscillations according to the Rabi two-level model
[Fig. 4(a)]. When we are slightly above the edge of stability
of the localized phase in the BOþ GP problem [� ¼ 0:1
and � ¼ 1, point (b) in Fig. 3], the dynamics of all three
models are significantly different, and the BOþ GP dy-
namics is faster than those of the full model [Fig. 4(b)]. The
analysis of the eigenvalue correlation diagram for the full
model reveals that the corresponding critical �� for
� ¼ 0:1 is slightly larger than that of the BOþ GP model.
Thus, the dynamics represents only the onset of the localized
state decay in the full model, while for the BOþ GP model
the localized state is already unstable. Except for a rather
narrow range of �’s the full and BOþ GP models are quite
similar [Figs. 4(a), 4(c), and 4(d)]. The role of nonadiabatic
transitions is indeed small, and all observed effects can be
attributed to the presence of GP. Finally, in the delocalized
region [point (d) in Fig. 3] where the initial localized state is
unrepresentable as a single eigenstate, all three models
demonstrate almost quantitatively similar dynamics with
quick and profound population transfer [Fig. 4(d)].

Our nonzero T setup corresponds to quick thermaliza-
tion of the initial state by environment followed by system
dynamics that does not account for interaction with the
environment. Temperature averaging includes several
states that may have different degrees of localization. If
we populate levels with a similar localization pattern,
T � 0, dynamics preserves the qualitative features of that
for T ¼ 0 [cf. Figs. 4(a) and 4(b) with Figs. 5(a) and 5(b)],
whereas differences in the localization character of popu-
lated levels create differences in dynamics [cf. Fig. 4(a)
with Fig. 5(a)]. Increasing temperature even more will
eventually populate enough levels to wash out all state-
specific dynamical features [Figs. 5(c) and 5(d)].

Extensions of the model.—Understanding dynamics with
GP for more complex Hamiltonians can be accomplished
via perturbative consideration of the corresponding two-
state problem. Two main factors are the selection rules for
the coupling matrix elements between diabatic vibrational
levels and energy differences between coupled levels. For
more general coupling potentials V12 � yn�x, odd n’s are
expected to produce similar effects to those of n ¼ 1 as
they can support the spinor symmetry, while even n’s
cannot and their behavior is closer to the case of a constant
coupling potential. Other ways to modify selection rules
also include introducing different frequencies for the donor
and acceptor, nonorthogonal tuning and coupling coordi-
nates, Dushinsky rotation, or anharmonicity of wells. All
of these modifications, unless they are too strong, can be
analyzed perturbatively.
In conclusion, we investigated dynamical consequences

of the spontaneous symmetry breaking in the two-
dimensional CI model. The naive BO approximation can-
not capture the correct spinor symmetry of the problem and
breaks down qualitatively even for the nuclear dynamics in
regions that are far from the CI. Introducing GP explicitly
into the nuclear wave function restores the symmetry and
the associated symmetry breaking. The latter leads to the
spatial localization of vibronic eigenstates and freezes the
interwell dynamics. Because of the topological character
of this effect, one can see this as an example of a topologi-
cal insulating state [32] in a finite system. Variation of
parameters can lower the overall symmetry and remove the
symmetry breaking; however, the localization of the eigen-
states and its dynamical consequences persist in some
range.
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