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We consider a bilayer geometry where a single impurity moves in a two-dimensional plane and is

coupled, via dipolar interactions, to a two-dimensional system of fermions residing in the second layer.

Dipoles in both layers point in the same direction oriented by an external field perpendicular to the plane

of motion. We use quantum Monte Carlo methods to calculate the binding energy and the effective mass

of the impurity at zero temperature as a function of the distance between layers as well as of the in-plane

interaction strength. In the regime where the fermionic dipoles form a Wigner crystal, the physics of the

impurity can be described in terms of a polaron coupled to the bath of lattice phonons. By reducing the

distance between layers this polaron exhibits a crossover from a free-moving to a tightly bound regime

where its effective mass is orders of magnitude larger than the bare mass.

DOI: 10.1103/PhysRevLett.111.220405 PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss

The polaron problem, in the broad sense of an impurity
coupled to a bath of elementary excitations, is of general
and fundamental interest in condensed matter physics. The
original formulation of the polaron model addressed the
motion of electrons coupled to the lattice vibrations of a
crystal [1]. In this context phonon excitations are found to
dress the impurity, thereby increasing its effective mass.
For strong interactions, self-trapping of polarons was pre-
dicted as a result of the dragged phonon cloud which
creates a confining potential where the impurity is finally
trapped [2]. Since the variational calculation by Landau
and Pekar, the polaron problem in the strong-coupling
regime has been investigated using many different theo-
retical tools [3], including exact quantum Monte Carlo
(QMC) methods [4–8]. On the experimental side, clear
evidence of the self-trapping of polarons is still lacking,
also due to the difficulty of accessing large interaction
strengths in solid-state devices [1].

An important recent extension of the polaron concept
concerns the field of ultracold atoms. A polaronlike behav-
ior is indeed expected from an impurity immersed in a
Bose-Einstein condensate, which provides the phonon
modes of the bath [9–11], as well as in a Fermi sea, where
the excitations of the medium have fermionic nature.
This latter case is particularly interesting since both attrac-
tive [12–14] and repulsive [15–17] polarons have been
considered theoretically and characterized in experiments
[18–20]. The quantum dynamics of an impurity in a Bose
gas has also been recently observed [21,22].

In this Letter we propose a realization of the polaron
model by using an impurity coupled via dipolar interac-
tions to a two-dimensional (2D) system of fermions in a
bilayer geometry [23]. By tuning the in-plane dipolar
interaction strength the state of the fermions can be turned
from the Fermi liquid (FL) to the Wigner crystal (WC)
phase, thereby changing the nature of the elementary exci-
tations of the bath from fermionic to bosonic. QMC

simulations are performed to calculate the binding energy
and the effective mass of the impurity as a function of the
distance between layers assuming that the interlayer po-
tential barrier is high enough to suppress tunneling. In
the WC phase the impurity exhibits a crossover from a
free-moving to a tightly bound regime similar to the self-
trapping transition. However, in contrast to the paradig-
matic case of electrons in a crystal, the coupling to phonons
is found to decrease the effective mass of the impurity with
respect to the band mass determined by the static periodic
potential and to favor hopping processes of the impurity
between lattice sites.
We consider a system of N þ 1 identical dipolar fermi-

ons of mass m and dipole moment d. N fermions occupy
the first layer (bottom layer) and the extra fermion occupies
alone the second layer (top layer). The layers are 2D
parallel planes separated by a distance � and motion in
the transverse direction is completely frozen by a strong
confining potential provided, for example, by an intense
optical lattice. Since interlayer tunneling is assumed to be
completely suppressed, the particle in the top layer can be
considered as a distinguishable impurity coupled via
dipolar interactions to the particles of the bottom layer.
An external field aligns the dipoles in the direction per-
pendicular to the layers, so that in-plane interactions are
purely repulsive and scale with the interparticle distance as
1=r3 while the interlayer particle-impurity potential is
given by

VðraiÞ ¼ d2ðr2ai � 2�2Þ
ðr2ai þ �2Þ5=2 ; (1)

where rai ¼ jri � raj is the in-plane distance between the
ith particle and the projection of the impurity position onto
the bottom layer. The full Hamiltonian of the system is
written as
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Here rij is the distance between a pair of particles in the

bottom layer and �ð@2=2mÞr2
a is the kinetic energy of

the impurity in terms of its projected coordinate ra. The
strength of the in-plane and interlayer dipolar interaction is
expressed in terms of the dimensionless parameters kFr0
and kF�, respectively. The characteristic length r0 ¼
md2=@2 arises from the dipole-dipole force and kF ¼ffiffiffiffiffiffiffiffiffi
4�n

p
is the Fermi wave vector of a 2D gas determined

by the density n in the bottom layer. The corresponding
Fermi energy is given by �F ¼ @

2k2F=ð2mÞ. A similar im-
purity problem in a bilayer configuration was considered in
Ref. [24] in the limit of weak interactions in the bottom
layer.

The equation of state of the single-layer 2D dipolar
Fermi gas at T ¼ 0 was calculated using the fixed-node
diffusion Monte Carlo (FNDMC) method [25]. A phase
transition from a Fermi liquid to a Wigner crystal is pre-
dicted at the critical interaction strength ðkFr0Þc ¼ 25� 3.
Here, we use the same numerical technique to calculate the
binding energy of the impurity, defined as the energy
difference between the ground state with and without
the impurity, � ¼ ENþ1 � EN, and its effective mass.
The latter is obtained from the diffusion coefficient of the
impurity in imaginary time � [26,27]

m

m� ¼ lim
�!1

hj�rað�Þj2i
4D�

; (3)

where D ¼ @
2=2m is the diffusion constant of a free par-

ticle and hj�rað�Þj2i ¼ hjrað�Þ � rað0Þj2i is the mean
square displacement of the impurity. Simulations are car-
ried out both in the WC phase [kFr0 > ðkFr0Þc] and in the
FL phase [kFr0 < ðkFr0Þc].

The technical details of the simulations are similar to the
ones reported in Ref. [25]. To simulate the bottom layer we
use a box of volume � ¼ LxLy, with Lx � Ly, and peri-

odic boundary conditions (PBC) in both spatial directions.
The fermionic density in the bottom layer is n ¼ N=�.
The calculation of the in-plane and interlayer dipolar in-
teraction energy are performed by considering replicas
of the simulation box and by carrying out the summation
over pairs of particles with separation up to the cut-off
distances Rc1 ¼ 0:5Lx and Rc2 ¼ 2Lx, respectively (see

the Supplemental Material [28]). The contribution from
distances larger than Rc1 (Rc2) is accounted for by assum-

ing a uniform distribution of particles which yields the tail

energy Etail1 ¼ �nd2=Rc1 (Etail2 ¼2�nR2
c2=ð�2þR2

c2Þ3=2).
We checked that larger values of Rc1 and Rc2 give the same

� and m� within statistical uncertainty. We notice that Rc1

is significantly smaller than Rc2 because in-plane interac-

tions largely cancel when the difference ENþ1 � EN is
considered. Calculations were performed with different

numbers of particles, ranging from N ¼ 30 to N ¼ 90 in
the WC and from N ¼ 29 to N ¼ 61 in the FL phase, and
no appreciable finite-size dependence is found for the
binding energy and the effective mass. All results reported
in this Letter are obtained using N ¼ 30 in the WC phase
and N ¼ 29 in the FL phase.
The FNDMC method is based on the choice of a trial

wave function giving the many-body nodal surface which
is kept fixed during the simulation [29]. We use a Jastrow-
Slater function of the form

c Tðr1; . . . ; rN; raÞ ¼
YN
i¼1

hðraiÞ
Y
i<j

fðrijÞ det½’ðriÞ�; (4)

where hðrÞ and fðrÞ are two-body non-negative correlation
terms and the nodes are determined by the antisymmetric
Slater determinant of single-particle orbitals ’ðrÞ. In the
FL phase we use plane waves: ’ðrÞ ¼ eik��r, where k� ¼
ð2�=LÞðnx�; ny�Þ are the wave vectors complying with PBC
in the square box of size L. In the WC phase, instead, we

use Gaussians: ’ðrÞ ¼ e�ðr�RmÞ2=�2
tied to the points

Rm ¼ ðmx þ 1
2myÞax̂þmyð

ffiffiffi
3

p
=2Þaŷ of the triangular

Bravais lattice in the x-y plane. Here, mx;y are integers,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=

ffiffiffi
3

pq
=kF is the lattice spacing and � is a varia-

tional parameter to be optimized [25]. The Jastrow terms
hðrÞ and fðrÞ are introduced to reduce the statistical vari-
ance and describe the correlations arising, respectively,
from interlayer and in-plane dipolar interactions. The spe-
cific parametrization of the two functions is described in
the Supplemental Material [28].
Results will be presented first for the WC phase and then

for the FL phase:
Impurity coupled to a Wigner crystal.—The main results

of the FNDMC simulations are reported in Figs. 1 and 2. In
Fig. 1 we show the binding energy j�j as a function of the
interlayer distance kF� for three values of the dipole-dipole
interaction strength. The value of j�j varies by orders of
magnitude and furthermore, when scaled in units of
ð�F=2ÞkFr0, the results practically overlap, showing a
very small dependence on the value of kFr0. At short
distances we find agreement with the energy of the two-
body bound state of the potential (1), present for any value
of kF� [30–32]. In Fig. 2 we report the results of the inverse
effective mass for the same three values of kFr0 shown in
Fig. 1. By reducing the distance � from 3=kF to 1=kF
the effective mass changes from a free regime, where
m=m��1, to values m=m��1. For example, at kF�¼1,
we find m=m� ¼ 0:006ð2Þ for kFr0 ¼ 35. The increase of
the mean square displacement of the impurity, j�rað�Þj2,
as a function of imaginary time is shown in Fig. 3 in the
case kFr0 ¼ 35. The results for m=m� are obtained, fol-
lowing Eq. (3), by fitting a line to the long-time behavior of
these curves. The dramatic increase of the effective mass at
small values of kF� is clearly shown by the tendency of the
long-time tail to approach a horizontal line.
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Direct contact with the acoustic polaron model can be
made when the value of kFr0 is deep enough in the WC
phase that the harmonic approximation for the single-layer
Hamiltonian is valid [25,33]. By expanding the particle-
impurity interaction term in a sum over the excitations of
the lattice, similarly to the derivation of the electron-
phonon interaction in crystals [1], one can write the
Hamiltonian of the bilayer system as

H ¼ U0 þ
X
q;s

@!q;s

�
ayq;saq;s þ 1

2

�
� @

2

2m
r2

a þUðraÞ

þ i

�

X
q;s

Vqe
iq�raq � e�q;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@N

2m!q;s

s
ðaq;s þ ay�q;sÞ: (5)

Here, U0 ¼ 1:597ðkFr0=8ÞN�F is the energy of the lattice
in the classical limit [33]. UðraÞ ¼ PN

m¼1 VðjRm � rajÞ is
the static periodic potential when the atoms occupy the
lattice sites Rm, whose spatial average over the primitive
cell is vanishing. Sums run over the wave vectors q of the
first Brillouin zone and over the two branches s, corre-
sponding to phonons with energy @!q;s whose creation and

annihilation operators are denoted by ayq;s and aq;s, respec-
tively. The interlayer potential (1) enters the above equa-
tion with its Fourier transform Vq ¼ �2�d2qe�q� and eq;s
denotes the polarization unit vector obeying to e�q;s �
eq;s0 ¼ �s;s0 . We notice that higher-order phonon terms as

well as umklapp processes are neglected in the
Hamiltonian (5).
Perturbation theory can be applied to the Hamiltonian

(5) in the limit of a weak interlayer coupling potential Vq.

The increase in energy with respect to the unperturbed
ground state Ek ¼ U0 þ 1

2

P
q;s@!q;s þ ð@2k2=2mÞ for an

impurity moving with a small momentum @k is given by
�Ek ¼ �þ ð@2k2=2Þ½ð1=m�Þ � ð1=mÞ� and allows one to
determine both the binding energy and the effective mass.
The contribution from the static potential UðraÞ is expo-
nentially suppressed at large kF� and can be neglected.
The coupling to phonons gives instead the result

� ¼ ��F
0:455

ðkF�Þ4
kFr0; (6)

for the binding energy and
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FIG. 2 (color online). Inverse effective mass of the impurity as
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only the static periodic potential UðraÞ is considered and
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FIG. 1 (color online). Binding energy of the impurity as a
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m�

m
¼ 1þ 0:553

ðkF�Þ4
; (7)

for the effective mass. The derivation of results (6) and (7)
makes use of the excitation energy @!q;‘ ¼ c‘q of

longitudinal long-wavelength phonons, where c‘ ¼
0:642

ffiffiffiffiffiffiffiffiffiffi
kFr0

p ð@kF=mÞ is the corresponding speed of sound
obtained numerically using the approach of Ref. [33].

The above predictions of the perturbation theory are
compared with QMC results in Fig. 1 and in Fig. 2, respec-
tively for � and m=m�. In the case of the binding energy, a
good agreement is found when kF� * 4 (see Fig. 1).
For large values of kF� the increase of the effective mass
is such a tiny effect that the limited accuracy of the
QMC results does not allow for a useful comparison
with Eq. (7). Instead, as Fig. 2 clearly shows, m=m� is
found to be appreciably smaller than unity for values of the
coupling where Eq. (7) is still very close to the unperturbed
value.

In order to understand better the role of phonons, we
performed calculations of m=m� using the single-particle
Hamiltonian �ð@2=2mÞr2

a þUðraÞ and we thereby deter-
mined the inverse band mass in the static potential UðrÞ. In
these simulations the particles in the bottom layer are
considered to be fixed in the positions Rm of the Bravais
lattice and phonon excitations are thus completely frozen.
The results are reported in Fig. 2 for the value kFr0 ¼ 35 of
the in-plane coupling strength. We notice that the suppres-
sion of m=m� with decreasing distance kF� is much more
pronounced in the static case than when quantum fluctua-
tions are included. For kF� & 3, these fluctuations produce
a significant decrease of the effective mass, thus enhancing
the ratio m=m�, in contrast to what is typically expected
from the coupling to phonon excitations. A possible physi-
cal explanation of this effect is phonon-assisted hopping of
the impurity between lattice sites, which results in a reduc-
tion of the impurity effective mass. This mechanism com-
petes with the increase of the effective mass arising from
the phonon drag and becomes dominant for small enough
values of kF�.

Finally, in Fig. 4(a) we show the results for the particle-
impurity correlation function, related to the probability of
finding the impurity and a particle at a distance r apart.
When kF� is large, the impurity is highly mobile and at
distances kFr > 1 it experiences a uniform medium. As the
interlayer separation is reduced, the large-distance tail of
the distribution coincides with the particle-particle corre-
lation function showing the structure of the WC phase [25].
At the same time the peak at short distance becomes higher
and a hole deepens at kFr & 1 due to the in-plane dipolar
repulsion. The structure of the crystal around the impurity
is only slightly changed, with peaks that are a few percent
higher, compared to the clean system.

Impurity coupled to a Fermi liquid.—The FNDMC
results for j�j and m=m� when kFr0 < ðkFr0Þc, corre-
sponding to the dipolar fermions in the bottom layer in

the FL phase, are reported in Figs. 1 and 2. For the smallest
value of the interaction strength, kFr0 ¼ 0:5, we find
agreement at large interlayer separation with the binding
energy obtained using a perturbation treatment based
on a free Fermi gas [24]. At short distance, instead, one
always recovers the energy of the two-body bound state.
The inverse effective mass is shown to decrease with
increasing interlayer coupling strength (see Fig. 2) but, in
contrast to the WC phase, it approaches a finite asymptotic
value for small kF�. If kFr0 � 1 we expect in this regime
m� ’ 2m, the mass of a dimer. Interaction effects in the
bottom layer make the value of the effective mass as large
as m� ’ 4m at kFr0 ¼ 20. The particle-impurity correla-
tion function is reported in Fig. 4(b). It behaves qualita-
tively similar to the WC case with a peak caused by the
particle-impurity attraction and a hole due to the in-plane
repulsion. The main difference is the more pronounced
deformation of the medium around the impurity in the
FL phase.
An important issue concerns the experimental realiz-

ability of the dipolar bilayer system in the proper regime
of parameters where strongly coupled polarons can be
investigated. 2D Fermi gases have been realized [34,35]
with inverse Fermi wave vectors in the range 1=kF �
100–500 nm. Optical lattices with high barriers and lattice
spacing on the order of 500 nm are also available. By using
polar molecules produced with mixtures of 23Na-40K [36]
or of 133Cs-6Li [37] the dipolar length can be as large as
r0 � 6:8–62 �m and large values of kFr0 can be achieved.
If such molecules can be produced in their ground state and
brought to quantum degeneracy, ultracold dipolar systems
can become a useful tool to investigate the rich physics of
polarons in the strong-coupling regime.
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