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We introduce and experimentally demonstrate a class of surface bound states with algebraic decay in a

one-dimensional tight-binding lattice. Such states have an energy embedded in the spectrum of scattered

states and are structurally stable against perturbations of lattice parameters. Experimental demonstration

of surface states with algebraic localization is presented in an array of evanescently coupled optical

waveguides with tailored coupling rates.
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Surface waves localized at an interface between two
different media play an important role in different areas
of physics [1]. Awidespread belief is that surface waves are
exponentially localized waves. Indeed, exponential local-
ization is ubiquitous for evanescent waves. Exponential
localization is found for electrons at the surface of a
periodic crystal, the so-called Tamm [2] and Shockley [3]
surface states with energy in a gap, in disordered lattices,
as a result of Anderson localization [4], or at a metal-
dielectric interface in the form of plasmonic waves.
However, quantum mechanics does not exclude the exis-
tence of localized states with a lower than exponential
localization. Subexponential localization, including a
power-law decay of the wave function, can arise, for
example, in lattice models with special kinds of disorder
[5,6]. Surface states with algebraic localization were pre-
dicted 20 years ago in certain special potentials for the
Schrödinger equation on a semi-infinite line [7]. Such
surface states have an energy embedded in the continuous
spectrum of scattered states; i.e., they belong to the class of
bound states in the continuum (BIC) originally discovered
by von Neumann and Wigner in a seminal paper [8] and
found in a wide range of quantum and classical systems,
including atomic and molecular systems [9–11], semicon-
ductor and mesoscopic structures [12–17], graphene [18],
quantumHall insulators [19], Hubbard models [20,21], and
optical structures [22–26]. Experimental demonstrations of
BIC states, either in the bulk [25] or at the surface [26],
have been recently reported in simple optical lattice sys-
tems exploiting destructive Fano interference. Such BIC
states are compact; i.e., they confine all the energy in few
sites with no penetration into the lattice continuum and are
thus not suited to observe subexponential localization.
Recently, surface states with subexponential localization
have been theoretically introduced by Molina and co-
workers in a special tight-binding lattice model [27].
Such states are BIC modes which, as opposed to those
earlier studied in Refs. [22,25,26], are not compact and
penetrate in the lattice with a subexponential (but higher
than algebraic) localization. However, like in [7] a

specially tailored local potential is required, which is of
difficult experimental implementation. The observation of
surface states with subexponential localization remains to
date elusive.
In this Letter we introduce and experimentally demon-

strate surface states with power-law decay in a semi-
infinite tight-binding lattice model, which do not require
any local potential. Algebraic localization exploits the
existence of a BIC mode, and it is not related to a special
kind of disorder in the lattice [5,6]. Our scheme is experi-
mentally demonstrated in an array of coupled optical
waveguides with tailored hopping rates, manufactured by
femtosecond laser writing in fused silica. Algebraic local-
ization of the surface state is proven by spectral recon-
struction of the BIC eigenmode from beam propagation
measurements.
We consider a semi-infinite tight-binding lattice with

inhomogeneous hopping rates �n and site energies �n (n ¼
1; 2; 3; . . . ) described by the tight-binding Hamiltonian

Ĥ ¼ � X1
n¼1

f�njnihnþ 1j þ �n�1jnihn� 1jg

þ X1
n¼1

�njnihnj; (1)

where �n > 0 is the hopping rate between sites jni and
jnþ 1i, and �0 ¼ 0. We assume that, far from n ¼ 1, the
lattice is homogeneous, i.e., �n ! 0 and �n ! � as n !
1. The energy spectrum of Ĥ is obtained from the follow-
ing eigenvalue equation for the occupation amplitudes �cn
of various lattice sites,

E �cn ¼ ��n �cnþ1 � �n�1 �cn�1 þ �n �cn; (2)

where n ¼ 1; 2; 3; . . . . The linear spectrum of scattered

states, i.e., the continuous spectrum of Ĥ, is provided by
the tight-binding lattice band �2� < E< 2�. Bound
states can arise owing to the inhomogeneity of the hopping
rates �n and/or of the local potential �n. A method to create
a single BIC surface state in a lattice with �n ¼ � and with
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a specially tailored local potential �n was proposed in
Ref. [27]. Here we suggest a different and experimentally
more accessible method to synthesize a discrete lattice that
sustains an arbitrary number M � 1 of surface BIC with
algebraic localization that does not require any local po-
tential, i.e., �n ¼ 0. Our idea is to introduce a modulation
of the hopping rates �n between adjacent sites, which can
be simply realized in a semi-infinite tight-binding lattice
with inhomogeneous spacing of adjacent lattice sites.

Some general properties of the Hamiltonian Ĥ in the
�n ¼ 0 case and for inhomogeneous hopping rates are
discussed in the Supplemental Material [28]. To realize a
BIC state with algebraic localization, let us modulate the
lattice hopping rates �n as follows,

�n ¼
8<
:
� n � lN�
lþ1
l

�
�
� n ¼ lNðl ¼ 1; 2; 3; . . .Þ ; (3)

where N ¼ Mþ 1 and � is an arbitrary real number that
defines the power-law decay exponent (�> 1=2 for nor-
malizable states). Indeed, it can be readily shown that
Eqs. (2) admit the following M surface states,

�cð�Þn ¼ An sinðnq�Þ; (4)

with energies E� ¼ �2� cosq� buried in the band of
scattered states. In the previous equation, � ¼ 1; 2; . . . ;M,
q� ¼ ��=N, An ¼ N l�� for ðl� 1ÞN < n � lN (l ¼
1; 2; 3; . . . ), and N is a normalization constant. As an
example, in Fig. 1(a) we show the very simple discrete
lattice that sustains one surface BICwith the algebraic decay
law �cn � 2=ðnþ 1Þ, i.e., corresponding to N ¼ 2 and
� ¼ 1, with energy E ¼ 0 at the center of the tight-binding
lattice band. The distribution of the surface BIC is depicted
in Fig. 1(b). In addition to surface BIC, the lattices defined
by the sequence (3) sustain additional surface states in the
gap, i.e., bound states outside the continuum (BOC). As an
example, in Fig. 1(c) we show the numerically computed
energy spectrum of Eq. (2) in a lattice comprisingNs ¼ 501
sites for N ¼ 2 and � ¼ 1, i.e., for the lattice shown in
Fig. 1(a). The degree of localization of the eigenstate �cnðEÞ
with energy E is measured by the participation ratio RðEÞ,
given by RðEÞ ¼ ðPnj �cnj2Þ2=ð

P
nj �cnj4Þ [27]. For localized

modes, R� 1 while for extended states R� Ns. The distri-
bution ofRðEÞ for theNs ¼ 501 eigenmodes of the lattice of
Fig. 1(a) is shown in Fig. 1(d). The figure clearly shows the
existence of one BIC surface state at E ¼ 0, together with a
number of BOC surface states (26 for the truncated lattice
with Ns ¼ 501 sites) with exponential decay tails and with
energies outside the lattice band. The two outer BOC states
have an energy E��E0 ’ �2:56�, whereas the energies
of the other BOC modes condensate toward the band gap
edges E ¼ �2�. The surface BIC turns out to be structur-
ally robust against perturbations of lattice parameters, as
discussed in Ref. [28].

To experimentally demonstrate surface BIC modes, we
implemented the semi-infinite lattice of Fig. 1(a) in an
array of 40 evanescently coupled optical waveguides
manufactured by femtosecond laser waveguide writing
on a fused silica substrate (see, for instance, [29,30]).
The second harmonic of a Yb-based femtosecond laser
(FemtoREGEN, HighQLaser GmbH), delivering 400 fs
pulses, is used for the writing process. An optimal process-
ing window was found at 20 kHz repetition rate, 300 nJ
pulse energy, and 10 mm=s translation speed. The laser
beam is focused at 170 �m below the glass surface by a
0.45 NA, 20� objective. The spacing dn between wave-
guide jni and jnþ 1i is engineered in order to implement
the desired coupling coefficients, namely �n=� ¼ 1; 2;
1; 3=2; 1; 4=3; 1; 5=4; . . . . For our waveguide writing pa-
rameters, the coupling constant �n turns out to be well
fitted by the exponential curve �n ¼ � exp½��ðdn � aÞ�,
where � ¼ 1:27 cm�1 is the coupling constant for a wave-
guide spacing a ¼ 15 �m and � ¼ 0:20 �m�1. The val-
ues of �n of the lattice of Fig. 1(a) are obtained with
spacings in the range dn ¼ 11:5–15 �m. The array was
probed at � ¼ 633 nm from light emitted by a He-Ne laser.
Note that in our optical setting the spatial light propagation

FIG. 1 (color online). (a) Schematic of a semi-infinite lattice
with tailored hopping rates that sustainsM ¼ 1 BIC surface state
with algebraic decay (� ¼ 1). (b) Behavior of j �cnj2 for the BIC
state. (c) Numerically computed energy spectrum of the lattice
comprising Ns ¼ 501 sites, and (d) corresponding behavior of
the participation ratio RðEÞ of the eigenmodes. The BIC state has
an energy E ¼ 0. BOC modes are located close to the band gap
edges �2�. The outer BOC modes have an energy E ¼ �E0 ’
�2:557�.
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along the axial distance z of the array reproduces the
temporal evolution of the occupation amplitudes cnðtÞ in
the lattice model described by the Hamiltonian (1), with
t ¼ z. To prove the existence of the surface BIC mode with
algebraic localization, we measured the propagation of a
light beam in the arrayed structure under suitable excita-
tion at the input plane and used a spectral method to
reconstruct the eigenenergy and profile of the BIC mode
[31]. The method basically requires us to measure the
correlation function CðtÞ of the evolving optical wave
packet jc ðn; tÞi ¼ P

ncnðtÞjni, i.e., CðtÞ ¼ hc ð0Þjc ðtÞi,
and the evolution of cnðtÞ in the various lattice sites.
Fourier analysis of the correlation function enables us to
localize the position of the discrete eigenvalues as reso-
nance peaks, whereas a Fourier analysis of jc ðn; tÞi gen-
erates the eigenfunction profiles [31]. Technical details of
the spectral method are given in Ref. [28]. To correctly
reconstruct the eigenvector corresponding to the BIC state
of the Hamiltonian (1), two conditions should be met: (1)
the initial wave packet should have a non-negligible over-
lap with the BIC mode and (2) the wave packet evolution
should be monitored for a time T much longer than�1=�.
The latter condition arises because the BIC state is
embedded into the spectrum of scattered states, whose
contribution into the reconstructed state should be avoided.
Once the two conditions (1) and (2) are met, the energy
position E ¼ E1 of the BIC state is found as a resonance

peak of the Fourier transform ĈðEÞ of CðtÞ, i.e.,

ĈðEÞ ¼
Z 1

�1
dtgðtÞhc ð0Þjc ðtÞi expðiEtÞ; (5)

whereas the corresponding eigenvector, apart from a
normalization factor, is reconstructed via the relation

�cnðE1Þ ’
Z 1

�1
dtgðtÞcnðtÞ expðiE1tÞ: (6)

In Eqs. (5) and (6), gðtÞ is a window function of length�T,
which can be chosen to be a Gaussian or a square-wave

function [28,31]. Its Fourier transform is the spectral
filtering function, whose spectral width �1=T sets the
minimum separation in energy levels that can be resolved
[31]. In our experiment, to meet the above-mentioned
conditions we propagated light along the array for a dis-
tance of 9 cm, corresponding to a time T ’ 11:4=�, and
excited the system at the left boundary waveguide n ¼ 1
[see red arrow in Fig. 2(a)], corresponding to the initial
wave packet jc ðn; 0Þi ¼ j1i. For such an initial condition,
the various lattice eigenmodes are excited with a weight
AðEÞ which is depicted in Fig. 2(b). The figure clearly
shows that the BIC state with energy E ¼ 0 is the most
excited eigenstate, and the condition (1) above is met.
Moreover, the propagated time T ’ 11:4=� is long enough
to provide a satisfactory resolution of the BIC eigenvalue
and a negligible contribution of the scattered states in the
reconstruction of the BIC mode profile [28], according to
the condition (2). As discussed in Ref. [28], for the lattice
Hamiltonian (1) with �n ¼ 0 and for the chosen initial
condition, cnðtÞ turns out to be either real-valued or purely
imaginary-valued. Such a property greatly simplifies the
experiment because a measurement of the light intensity
distributions jcnðtÞj2 is sufficient to retrieve the behavior
of cnðtÞ, and hence the computation of the correlation
function and reconstruction of the eigenvector according
to Eqs. (5) and (6). In our experiment, the evolution of
jcnðtÞj2 was measured by top-view imaging of the fluores-
cence signal emitted by the waveguides where red light
is propagating [30,32,33]; further details are given in
Ref. [28]. In Fig. 2(c) we show the measured map of light
intensity evolution along the 9-cm-long waveguide array.
For comparison, the corresponding theoretical map is also
shown in Fig. 2(d). Note the good agreement between the
two maps. From the measured intensity map, we extracted
the evolution of cnðtÞ in thevarious guides [28] and computed
the spectrum of the correlation function using a Gaussian
filter gðtÞ ¼ gGðtÞ ¼ ð1=TÞ exp½�ðt� T=2Þ2=w2�, trun-
cated at t < 0 and t > T, with w ¼ 2T=5. As compared to

FIG. 2 (color online). (a) Schematic of the waveguide lattice; the red arrow indicates the waveguide where light is launched.
(b) Mode excitation amplitude AðEÞ for initial lattice excitation at the boundary site, i.e., cnð0Þ ¼ 	n;1 (c) and (d) Experimental and

theoretical maps of the light intensity evolution in the lattice waveguides.
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the square-wave filter, the Gaussian one avoids the appear-
ance of oscillatory tails in the resonance peak, which might
be erroneously attributed to the occurrence of other bound

states. The computed spectrum jĈðEÞj2 of the autocorrelation
function is shown in Fig. 3(a), clearly indicating a resonance
peak at E ¼ E1 ¼ 0, i.e., the existence of a bound state with
energy E1 embedded into the spectrum of scattered states.
The outer BOC modes are very weakly excited by the initial
wave packet, and thus they are not visible in the spectrum of
Fig. 3(a). In Fig. 3(b) we show the behavior of the recon-
structed BIC eigenvector, obtained from Eq. (6) withE ¼ 0,
for lattice sites up to n ¼ 14. In this case a square filter gðtÞ
has been used, which provides a slightly better estimate than
the Gaussian filter. As expected, the values of j �cnj2 of even-
number waveguides are very small, whereas j �cnj2 at odd-
number waveguides shows a slow decay. The results shown
in Fig. 3(a) and 3(b) are compared with the theoretical
predictions based on Eqs. (5) and (6), where the amplitudes
cnðtÞ are obtained by numerical integration of the coupled-
mode equations rather than from themeasured intensitymap.
To prove the algebraic (rather than exponential) localization

of the BIC state, the reconstructedmode amplitudes j �cnj2 are
fitted, at odd lattice sites, by either an inverse power-law
curve j �cnj2 ¼ 1=½ðnþ 1Þ=2�2
 or by an exponential curve
j �cnj2 ¼ exp½�
ðn� 1Þ� with a single fitting parameter 
.
The optimal fitting curves, obtained by minimizing the rms
deviation, are shown in Fig. 3(c). The algebraic curve turns
out to provide a much better rms deviation than the expo-
nential one (rms deviation 0.010 06 vs 0.043 16), with an
optimum fitting parameter 
 ¼ 0:96, which deviates from
the expected value 
 ¼ 1 by�4%.
In conclusion, we have introduced and experimentally

demonstrated a new class of surface bound states with
algebraic localization. While exponential localization is
ubiquitous for evanescent waves, algebraic localization is
found when the lattice sustains bound states with an energy
buried in the spectrum of scattered states. Here a design
procedure of surface states with algebraic decay has been
proposed for a tight-binding lattice model with inhomoge-
neous hopping rates and demonstrated using optical wave-
guide arrays. Our results provide the first observation of
surface states with algebraic localization in a controllable
physical system and are expected to be relevant to other
fields, including ultracold atoms in optical lattices, elec-
tronic transport in quantum dot chains, and mesoscopic
structures, as well as other photonic systems.
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