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We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly coupled

lattices as a way to stabilize spin liquids. In LiZn2Mo3O8, the disappearance of 2=3 of the spins at low

temperatures suggests that its triangular lattice decouples into an emergent honeycomb lattice weakly

coupled to the remaining spins, and we suggest several ways to test this proposal. We show that these

orphan spins act to stabilize the spin liquid in the J1-J2 honeycomb model and also discuss a possible 3D

analogue, Ba2MoYO6 that may form a ‘‘depleted fcc lattice.’’

DOI: 10.1103/PhysRevLett.111.217201 PACS numbers: 75.10.Kt, 75.10.Jm

Spin liquids are highly correlated magnetic states that
break no symmetries and hold the theoretical promise of
new fractionalized excitations and topological orders [1,2].
Realizing spin liquids experimentally is a hard problem,
although we have a few recent examples on the triangular
[3,4] and kagome [5] lattices. To explore the full range of
possible spin liquids, we would like to realize spin liquids
on awidevariety of lattices and having an additionalmethod
to stabilize the spin liquid phasewould be extremely helpful.
In this Letter, we show how forming a low temperature
emergent honeycomb lattice out of the triangular lattice
can stabilize the spin liquid state, and discuss the relevance
of this idea to LiZn2Mo3O8.

Despite its bipartite nature, the low coordination number
(z ¼ 3) of the honeycomb lattice increases the quantum
fluctuations, and numerical studies have suggested that a
spin-liquid region can emerge out of the Néel state with
decreasing U (Hubbard model)[6] or increasing next-
nearest neighbor coupling, J2 (Heisenberg model) [7–10].
Although further studies now suggest weak magnetic order
in the Hubbard model [11,12] and the existence or size of
the spin liquid region in the Heisenberg model are con-
troversial [13–15], the energy of the spin liquid is clearly
competitive. Currently there are no experimental examples
of honeycomb spin liquids, but the triangular lattice mate-
rial, LiZn2Mo3O8 [[16]] might provide an unexpected
realization, as it could deform into an emergent honey-
comb lattice weakly coupled to orphaned central spins.

LiZn2Mo3O8 is a layered triangular lattice material
built out of Mo3O8 clusters [16]. Each cluster forms a
molecular orbital with one Heisenberg spin-1=2 per three
Mo. The magnetic susceptibility follows a Curie-Weiss law
within two different temperature regimes: a high tempera-
ture regime above 100 K with Curie constant CH ¼
0:24 emuKmol=Oe f:u: (�H ¼ 1:39�B), corresponding
to nearly the full S ¼ 1=2 moment and Weiss temperature,
�H ¼ �220 K; and a low temperature regime with Curie
constant CL � 1=3CH and �L ¼ �14 K. This drastic
moment reduction suggests that two thirds of the spins
vanish below 100 K, which is consistent with the broad

plateau in the entropy at S � ð1=3ÞR log2 around 100 K
[16]. Electron spin resonance measurements find the full
S ¼ 1=2 moment (with g ¼ 1:9) at low temperatures, con-
firming that this decrease is due to collective rather than
single ion physics [17]. There are no sharp thermodynamic
signatures, only a broad crossover in the susceptibility and
a hump in the specific heat; Li NMR [17] and neutron [16]
measurements have found no ordered moments, suggesting
a gradual gapping out rather than a phase transition.
Sheckelton et al. proposed that the triangular lattice decou-
ples into a valence bond solid (VBS) on the honeycomb
lattice, with free central spins [16]. However, if the lattice
is really triangular, this decoupling is baffling—it should
instead form a 120� ordered state [18]. To resolve this
mystery, we propose that the triangular lattice physically
distorts to favor this decoupling.
We suggest that the Mo3O8 clusters rotate as shown in

Fig. 1(c), where clusters on the A and B honeycomb sub-
lattices rotate in opposite directions, while the central
clusters (C) do not rotate. This rotation shortens the bond
length between the honeycomb sites while lengthening that
to the central spins. In other words, the honeycomb nearest
neighbor coupling, J1 increases while the coupling to the
orphan C spins, J0 weakens, favoring this decoupling. This
rotation can lead to a large change in bond length and thus
J, due to the exponential dependence on the oxygen over-
lap. We parameterize this change to first order with J1 ¼
ð1þ xÞJ01 , J0 ¼ ð1� xÞJ01 , where x 2 f0; 1g smoothly
interpolates between the triangular and honeycomb latti-
ces. J2 is unaffected. The resulting J1-J2-J

0 Hamiltonian is,

H ¼ J1
X
hijiA;B

~Si � ~Sj þ J2
X

hhijiiA;B
~Si � ~Sj þ J0

X
hijifðA;BÞ;Cg

~Si � ~Sj:

(1)

We can gain a rough understanding by examining the
variational energies of the triangular and honeycomb latti-
ces. Estimating J2=J1 from �L=�H puts J2=J1 � :06 [[16]],
well within theNéel region of the phase diagram [Fig. 2(a)].
However, the low temperature regime is not magnetically
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ordered. We shall show later that coupling to the orphan
spins drives the state towards the spin liquid, so we take the
variational energy associated with the gapped spin liquid
found for J2=J1 � 0:06, which is �0:5J1 per honeycomb
spin [9]. At this point, we ignore the J2 coupling of the
orphan spins and treat them as free, making the energy per
siteEhex ¼ �0:33ð1þ xÞJ01 . The triangular lattice energy is
�0:537J01 per site [18]. The honeycomb and undistorted

triangular energies cross at intermediate x ¼ 0:63. The real
honeycomb lattice energy will have several corrections that
willmove this crossing around: a negative shift proportional
to J2 due to the orphan spin correlations; a negative shift due
to coupling between the honeycomb and central spins, aswe
shall show later; and anOðx2Þ positive shift due to the lattice
cost of the rotations,whichwe expect to be small both due to
its rotational nature and the cluster structure.

How might these rotations be detected? They triple the
size of the unit cell [Fig. 1(b)], but leave the trigonal
symmetry unchanged. If the rotations form a static order,
they should be seen with x-ray scattering. So far this has
not been found [17]; however, they could instead be short
range or even dynamic. Short range order should be seen
with further NMR or�SRmeasurements, but no matter the
nature of the order, a soft phonon corresponding to these
rotations should appear at the reciprocal lattice vectors of
the honeycomb lattice.

In our variational picture, we left the central spins
completely decoupled, both from the honeycomb lattice
and from each other. It turns out that these orphan spins
favor the spin liquid over the competing Néel and VBS
phases, as we shall now show by looking at a single central
spin impurity in each of the four relevant phases. The likely
phase diagram of the J1-J2 honeycomb lattice is shown in
Fig. 2(a). Most studies [9,10,13–15] agree that the Néel
phase is stable below J2=J1 � 0:2 and that a staggered
VBS (sVBS) is stable above J2=J1 � 0:35, but the middle
of the phase diagram is more muddled. There is a plaquette
VBS below the sVBS, and there may be a narrow spin
liquid region around J2=J1 � 0:22–0:25 [[10]], whose en-
ergy is consistent with the sublattice pairing state (SPS)
[7,8,10]. This phase disappears quickly with either positive
or negative J3 [[10,13]], so the spin liquid region, if it
exists, is clearly very narrow. All studies find a surprising
second order phase transition between the Néel state and
either the spin liquid [10] or pVBS [13–15], suggesting
deconfined criticality [8,19,20].

FIG. 2 (color online). (a) Rough phase diagram of the J1-J2
honeycomb lattice [10], with Néel, plaquette VBS (pVBS) and
staggered VBS (sVBS) states, with a small controversial spin
liquid region, thought to be the sublattice pairing state (SPS).

(b) Diagram for the second order energy shift, �Eð2Þ
SPS generated

by a single central spin impurity in the SPS. Solid lines are
fermionic spinons, while the dashed line represents the central

spin. (c) Diagrams for the second order energy shift, �Eð2Þ
AFM for

the single central impurity in the Néel state. Squiggly lines
represent Holstein-Primakoff bosons, �y

k, not magnons, and

the dashed lines are the Holstein-Primakoff bosons, dy repre-
senting the central spin. (d) Initial and final spin configurations

for calculating �Eð2Þ
sVBS, where the red ellipses represent singlet

valence bonds. Diagrams for �Eð2Þ
pVBS are similar.

FIG. 1 (color online). (a) J1-J2-J
0 lattice, where J0 ¼ J1 de-

scribes the triangular lattice and J0 ¼ 0 describes decoupled
honeycomb (J1-J2) and triangular (J2) lattices. The A and B
sublattices of the honeycomb lattice and the C sublattice of
central spins are labeled. (b) Unit cells: Blue dotted lines show
the small initial unit cell, while orange dashed lines show the
larger final unit cell. Both have trigonal symmetry—only the
lattice vector changes. (c) These rotations convert the triangular
lattice into the J1-J2-J

0 lattice: the A and B clusters rotate in
opposite directions, while the C clusters do not rotate. Inset
shows original configuration. (d) The basic unit of the depleted
fcc lattice: strong bonds are shown as red (solid) lines, weak
bonds as blue (dashed) lines. The central layer forms the emer-
gent honeycomb lattice.
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We begin with the SPS, which can be described with a
fermionic spin representation with two spinons [7,8], ai�
and bj� on the two sublattices. The SPS is a mean-field

state with a real nearest neighbor hopping amplitude, t ¼
hayi�bj�i (for hiji) and complex second neighbor pairing

amplitudes with opposite phases on the two sublattices,

�A ¼ �ei� ¼ hayi�ayj��i and �B ¼ �e�i� ¼ hbyi�byj��i
(for hhijii)[7]. The mean-field Hamiltonian,

H ¼ �t
X
hiji

½ayi�bj� þ H:c:�

þ�
X
hhijii

½ei�sgnð�Þayi�ayj�� þ H:c:�

þ�
X
hhijii

½e�i�sgnð�Þbyi�byj�� þ H:c:�; (2)

can be diagonalized to give four bands,

� Ek� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2j�kj2 þ �2

k � 2tj�k�kj sin�
q

; (3)

where �k ¼ 1þ eik�a2 þ eik�a3 , �k ¼ �ðj�kj2 � 3Þ, and
a are the real space lattice vectors: a1 ¼ x, a2 ¼ ðx=2Þ þ
ð ffiffiffi

3
p

y=2Þ and a3 ¼ a2 � a1 (where we have set the lattice
constant to one). For � ¼ 0, this dispersion is that of
graphene, with Dirac cones at K and K0. These cones are
gapped out by finite�. At special points, � ¼ 0,�=2, there
is a single gap minimum and the spin liquid has a Uð1Þ
symmetry. For all other �’s, the SPS is a Z2 spin liquid,
with a line of minima around K and K0 and a gap magni-
tude of �g ¼ 6�. Variational Monte Carlo results for

J2=J1 ¼ 0:1 find the best solution for t ¼ J1, � ¼ 0:1t
and � ¼ 1 [9], which we use for the rest of the Letter,
although our results are relatively insensitive to these
values, especially �.

As the SPS is a gapped spin liquid, it should be stable
to the introduction of magnetic impurities up to J0 � �g.

In fact, the exchange coupling to the central spins is
frustrated, increasing the stability. The exchange coupling

J0
X6
j¼1

~Sj � ~S7 ¼ J0
X
k;q

�Aqa
y
k ~�akþq � ~S7þ�Bqb

y
k ~�bkþq � ~S7;

(4)

where �Aq ¼ eia1�q�q, �Bq ¼ eia2�q��
q is reminiscent of a

Kondo coupling to spinons instead of electrons.
We fix the central spin and calculate the energy shift to

second order with the diagram in Fig. 2(b):

�Eð2Þ
SPS¼jJ0j2X

k;q

T
X
i!n

jV̂�1�2

k;kþqj2G�1
ðkþq;i!nÞG�2

ðk; i!nÞ

¼ jJ0j2Xk;qjV̂�1�2

k;kþqj2
fðEkþq;�1

Þ�fðEk;�2
Þ

Ekþq;�1
�Ek;�2

¼�2jJ0j2X
k;q

X
�12c;�22v

jV̂�1�2

k;kþqj2
Ekþq;�1

þEk;�2

; (5)

where we take T ! 0, fixing �1 and �2 in the conduction
and valence bands, respectively. The matrix element is:

V̂
�1�2

k;kþq ¼ �Aq

�
Uy

k

�þ 0

0 0

 !
Ukþq

�
�1�2

þ �Bq

�
Uy

k

0 0

0 �þ

 !
Ukþq

�
�1�2

; (6)

where Uk is the eigenvector matrix diagonalizing the

Hamiltonian: Uy
kHkUk ¼ diagðEk�Þ. Upon numerical

integration, we find:

�Eð2Þ
SPS ¼ �3:4

jJ0j2
J1

: (7)

The energy shift in the VBS phases can be calculated
directly through second order perturbation theory,

�Eð2Þ
VBS ¼ �X

n

jhijH0jfnij2
�s

(8)

by applying H0 ¼ J0
P6

j¼1
~Sj � ~S7 to representative hexa-

gons, as shown in Fig. 2(d) for the sVBS phase, where two
intermediate states jf1i and jf2i are generated from H0jii.
�s ¼ ð3=4ÞjJ1j is the singlet gap. The pVBS state proceeds
similarly, but with more bookkeeping. Notably,H0 kills the
plaquette singlet states shown in the inset of Fig. 2(a) and
the pVBS state gains the least energy from the orphan
spins. The two energy shifts are:

�Eð2Þ
sVBS ¼ � 4jJ0j2

3J1
¼ �1:3

jJ0j2
J1

;

�Eð2Þ
pVBS ¼ � 2jJ0j2

3J1
¼ �0:67

jJ0j2
J1

: (9)

Finally we calculate the energy shift in the Néel phase
using spin wave theory. We introduce three Holstein-
Primakoff bosons [21] for the three sublattices: a, b, and
d. As the spins on the A and B sublattices are antiparallel,
we rotate the B spins, while fixing C parallel to A:

SzA ¼ S�aya; SþA ¼ ffiffiffiffiffiffi
2S

p
ay; S�A ¼ ffiffiffiffiffiffi

2S
p

a;

SzB ¼�Sþbyb; SþB ¼ ffiffiffiffiffiffi
2S

p
b; S�B ¼ ffiffiffiffiffiffi

2S
p

by;

SzC ¼ S�dyd; SþC ¼ ffiffiffiffiffiffi
2S

p
dy; S�C ¼ ffiffiffiffiffiffi

2S
p

d:

(10)

To OðSÞ, the honeycomb spin-wave Hamiltonian is

H0 ¼ �3J1N sS
2 þ J1S

X
k

3aykak þ 3bykbk

þ ½��
ka

y
kb

y
�k þ �kbka�k þ H:c:�

¼ �3J1N sS
2 þX

k�

!k�

�
�y
k��k� þ 1

2

�
; (11)

whereN s is the number of sites, �k is defined above, and

the dispersion!k� ¼ !k ¼ J1S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� j�kj2

p
is identical for
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the two bands of magnons.!k has minima at 0,K, andK0,
as expected. The Hamiltonian is diagonalized by

�y
1k ¼ ukb

y
k � v�

ka�k; �y
2k ¼ u�ka

y
k þ vkb�k: (12)

The impurity interaction is given by

H0 ¼ J0S
X
k

½�Aka
y
kdþ �Bkb

y
kd

y þ H:c:�

þ J0S
X
k;q

�Bqb
y
kbkþq � �Aqa

y
kakþq: (13)

We can calculate the second order energy shift directly
with second order perturbation theory, or equivalently with
the diagrams in Fig. 2(c). The particular structure of the
impurity interaction means that the original � bosons and
not the honeycomb magnons, �þ �y are the relevant
particles. There are two intermediate states: spin flip scat-

tering off the impurity state, jf1ki ¼ �y
�kd

yj0i and poten-

tial scattering off the impurity spin that creates two bosons,

jf2k;k0 i ¼ �y
�k�

y
�0k0 j0i. The matrix elements are

V1k¼hf1kjH0j0i¼J0Sðuk�Bk�v�
k�AkÞ;

V2k;k0 ¼ hf2k;k0 jH0j0i¼J0Sðuk0vk�Aq�ukv
�
k0�BqÞ; (14)

where we have used Eq. (12), and defined q 	 k0 � k,
leading to the overall energy shift

�Eð2Þ
AFM ¼�X

k

jV1kj2
!k

�X
k;k0

jV2k;k0 j2
!kþ!k0

¼�1:2
jJ0j2
J1

: (15)

So we have found that the SPS energy shift is more than
twice as large as either the Néel or VBS energy shifts,
indicating that the central spins are stabilizing the spin
liquid state over the other states—a simple interpretation
is that in the spin liquid state, the hexagon surrounding the
orphan spin can gain more energy by being polarized as
compared to the Néel or VBS states.

How can these three states be experimentally differen-
tiated? Symmetrywise, the spin liquid breaks no symme-
tries while the Néel state breaks spin rotational symmetry,
the sVBS breaks trigonal symmetry (as the dimers select a
direction), and the pVBS breaks translation symmetry to
enlarge the unit-cell threefold. The magnetic excitations, as
measured by inelastic neutron scattering (INS) also differ-
entiate between the VBS phases and the SPS. In a VBS,
the spinons are confined, which gives a sharp, nearly dis-
persionless singlet-triplet excitation at �s ¼ 3=4jJ1j �
165 K. The SPS spinons are also gapped, with a similar
magnitude (�g ¼ 0:6jJ1j) but deconfined, so the INS sig-

nal turns on gradually above the gap and the excitation has
a fairly large bandwidth of 6jJ1j. We have done an RPA
calculation to extract the power law behavior at gap min-
ima, q ¼ 0 and q ¼ K�K0, where we find 	00ð! ¼
�g þ 
!Þ turns on as 
!2 and 
!, respectively (see

Supplemental Material [22]). The naive expectation is
that a convolution of spinons yields a step function at the

threshold, but matrix elements cause further suppression
and we expect a highly smeared spectral function.
Emergent lattices provide a powerful new way to stabi-

lize spin liquids, and there is an intriguing possible 3D
application in Ba2YMoO6, which also shows two distinct
paramagnetic regimes [23,24]. Here, the Mo sit on an fcc
lattice, which should order magnetically. However, these
Mo5þ ions have one 4d electron in the t2g orbital, forming

a Jeff ¼ 3=2 quartet. The Jeff quartet is unusual in that it
has no intrinsic magnetic moment [25], although hybrid-
ization with the surrounding oxygens can restore it [26],
explaining the experimentally observed moment. There is
no sign of the expected Jahn-Teller distortion down to 2 K,
and the full R log4 entropy is recovered by 150 K [24],
implying that the moments retain their full SUð4Þ symme-
try. While the Hamiltonian will not be SUð4Þ symmetric
without engineering, the absence of ordering suggests that
SUð4Þ quantum fluctuations might increase the chance of
finding a spin liquid. The quartet nature means that a
singlet involves four sites: a singlet valence plaquette
[27–29], and allows a rich possible phase diagram.
So Ba2YMoO6 can be described as Jeff ¼ 3=2 quartets

on an fcc lattice, which, like the triangular lattice in
LiZn2Mo3O8, should order. And yet there is no sign of a
phase transition in the thermodynamics, or of magnetic
order in �SR [24], neutrons [30] or Y NMR [23]. Instead,
the susceptibility shows a high temperature Curie-Weiss
regime, with CH � 0:25 emu=molK and �H ¼ �160 K
that crosses over around 50 K to a low temperature
Curie-Weiss regime with CL � 0:15CH and �L ¼
�2:3 K [24], suggesting that 85% of the Mo spins vanish
below 50 K.
The fcc lattice can be thought of as an ABC stacking of

triangular lattices; this structure naturally suggests a con-
struction of emergent lattices by decoupling one of the
layers into a honeycomb lattice with weakly coupled cen-
tral spins—see Fig. 1(d) for the basic unit. If we decouple
every other layer, creating an AB0CA0BC0 stacking, where
N0 indicates a decoupled layer, we create a one-sixth
depleted fcc lattice. If the strongly coupled spins form a
valence bond solid or spin liquid, 17% orphan spins will
remain at low temperatures, close to the number seen in
Ba2YMoO6. However, as each Y atom will have exactly
one orphan spin as a neighbor, this decoupling cannot
explain the development of two Y NMR sites below
50 K [23]. Another possibility is to decouple every third
layer, ABC0ABC0, forming a one-ninth depleted fcc lattice
that leaves behind 11% orphan spins. This lattice creates
two Y NMR sites: those with one neighbor orphan spin and
those with none, in a two to one ratio. Both possibilities
expand the original fcc unit cell to a sixfold or ninefold
larger hexagonal unit cell, which could be detected with
x-ray scattering. Ba2YMoO6 seems to have 15% orphan
spins, intermediate between these two options. So another
possibility is that the depleted layers are randomly
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distributed and the average spacing is between one and two
layers. This arrangement would still lead to two Y NMR
sites, but would not show up in x-ray measurements.
However, as with LiZn2Mo3O8, we expect some kind of
lattice distortion to favor this decoupling and there should
be a corresponding soft phonon around 50 K. While a spin
liquid would be the most exciting possibility for these
depleted fcc lattices, inelastic neutron measurements
detect a sharp excitation at 28 meV that looks like a
singlet-triplet gap [30], suggesting a VBS or plaquette
solid instead.

In this Letter, we have suggested the formation of emer-
gent lattices weakly coupled to the remaining spins as an
explanation for the two distinct paramagnetic regimes in
both LiZn2Mo3O8 and Ba2YMoO6. However, this idea is
much more general and provides a novel mechanism to
stabilize quantum spin liquids in both two and three dimen-
sions. Future numerical and theoretical work should exam-
ine this idea in more detail on specific lattices and check
the full phase diagram. Experimentally, this idea may be
useful in attempts to engineer spin liquid materials via
creating artificial emergent lattices.
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