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B. Yager, J. Nyéki, A. Casey, B. P. Cowan, C. P. Lusher, and J. Saunders

Department of Physics, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
(Received 6 August 2013; published 19 November 2013)

We have performed thermodynamic and NMR relaxation time measurements of 3He adsorbed in the

pores of the mesoporous molecular sieve MCM-41 at temperatures down to 1.7 K and at a range of

frequencies up to 240 kHz. The MCM-41 substrate comprises a uniform array of quasi-1D straight pores

with a diameter of 2.3 nm. We preplated the pores with a monolayer of 4He to achieve an effective

diameter of 1.6 nm at low temperatures. We made NMR measurements as a function of line density and

frequency to investigate the spin dynamics and the effect of dimensionality. We observed T1 / !1=2,

which is characteristic of one-dimensional diffusion. At these temperatures this arises from a classical

size effect in the narrow pores. Our results demonstrate the possibility to study the spin dynamics of

a 1D Tomonaga-Luttinger liquid at lower temperatures, where the 3He liquid will constitute a quantum 1D

system.
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One-dimensional (1D) quantum systems have proven an
extremely fertile field for the development of theoretical
tools to understand the influence of strong correlations in
quantum matter. This includes predictions of unique behav-
ior arising from dimensionality. A striking example is the
breakdown of Fermi liquid theory, the standard model of
interacting fermions, in one dimension, due to the nonper-
turbative influence of interactions [1–4]. Avariety of physi-
cal realizations of one-dimensional systems have been
identified including spin chains [5], quasi-1D organic super-
conductors [6], ultracold trapped atoms [7], edge states
in a two-dimensional gas [8], tunneling between long bal-
listic wires in GaAs/AlGaAs heterostructures [9], and the
observation of spin-charge separation [10].

Another approach has been the study of the isotopes of
helium, both 4He (a boson) and 3He (a fermion), confined to
nanotubes. Here most of the work has used mesoporous
molecular sieves, consisting of arrays of channels of well
defined diameter. There have been extensive studies of
the influence of dimensionality on the superfluidity of 4He
[11–17]. The motivation for our experiment was the pros-
pect of using 3He confined in such nanotubes as a model
system to study fermionic Tomonaga-Luttinger liquid
(TLL) behavior [2]. The study of bulk 3He played a central
role in the development of Landau Fermi-liquid theory [18].
Also the investigation of 3He films has contributed to under-
standing the influence of two dimensionality on strong
correlations [19,20]. In both cases the ability to continu-
ously vary the density has been of crucial importance. This
advantage is coupled to intrinsic purity, the absence of a
lattice, and the fact that the spin (S ¼ 1=2) of the fermions
themselves, arising from the 3He nuclear spin, can be
directly accessed by nuclear magnetic resonance (NMR).

In this spirit, 3He confined in nanotubes offers the
prospect of a uniform one-dimensional system of interact-
ing fermions with tuneable line density. This is arguably

the simplest system in which to seek to experimentally
demonstrate the absence of single particle excitations
(Landau quasiparticles), their replacement by collective
excitations, and the fractionalization (spin-mass separa-
tion) central to Tomonaga-Luttinger liquids. Furthermore
the dominance of known short-range van der Waals inter-
actions lends itself to ab initio theory (see recent quantum
Monte Carlo simulations of 4He TLL in nanopores, as a
function of pore diameter [21]).
Heat capacity measurements of 3He adsorbed in the 4He

preplated pores of the mesoporous substrate FSM-16 pro-
vide evidence of a crossover from a 2D gas to a 1D quantum
state at low temperatures [14,22,23]. In this Letter we report
the first NMR study of the spin-dynamics of 3He adsorbed
on a similar substrate, MCM-41 [24]. The plating of the
nanotubes by 4He and the 3He line density were adjusted
to meet the stringent conditions required for the ultimate
creation of the 1D quantum system. Our NMR technique
allows the convenient measurement of the dependence of
the spin-lattice relaxation time T1 on the angular Larmor
frequency !. In this work at temperatures above the cross-

over we observe T1 / !1=2, characteristic of 1D diffusion,
which in this regime arises from a classical size effect in
the narrow pores. This illustrates the power of NMR to
ultimately provide insight into the spin dynamics of the
putative TLL.
In order to clarify the conditions necessary for the study

of quantum degenerate 1D 3Hewe first consider the case of
noninteracting particles. The Fermi energy EF1D of a 1D
noninteracting gas of spin- 12 particles of massm is given by

kBTF1D ¼ ð@2�2n2L=8mÞ, where nL is the 1D line density.
To realize a quasi-1D 3He quantum system we require
EF1D <�, where � is the energy difference between the
ground state and the first excited azimuthal state for 3He in
the pores [22,23]. Also the temperature T of the system
must be much less than �=kB � TF1D. Matsushita et al.
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have calculated the eigenstates of bare, noninteracting 3He
atoms on 4He coated pores, assuming the 3He cannot
penetrate into the coating [22,23]. Their results provide a
value of �� 800 mK for an effective pore diameter of
1.6 nm. An ideal gas Fermi temperature TF1D � 100 mK
requires a line density nL ¼ 7� 108 m�1, equivalent to
loading the pores with 0.01 monolayers.

This presents challenges for the detection ofNMRsignals,
which we meet by exploiting the sensitivity of a broadband
pulsed NMR dc SQUID (Superconducting Quantum
Interference Device) spectrometer [25–27]. This setup
allows us to study conveniently and directly the NMR re-
laxation times as a function of Larmor frequency !¼�B,
where � is the gyromagnetic ratio and B is the applied
magnetic field, rather than conventional NMR relaxometry
techniques relying on field cycling [28].

The mesoporous substrate MCM-41, consists of a uni-
form array of straight hexagonal mesopores, in the form
of a powder with a pore length equal to the grain size
�300 nm. The sample used in this work had a nominal
pore diameter of 2.3 nm. The effective pore diameter for
3He was reduced by preplating with 4He, in order to coat
the inner surface of the pores with a monolayer of solid
4He, to an effective diameter of 1.6 nm. This nonmagnetic
layer is also crucial to replace any surface layer of solid
3He. This eliminates the large background signal that
would arise from the surface 3He layer and spin-relaxation
mechanisms that arise from exchange between 3He within
the pore and in the surface layer.

The MCM-41 was baked at 500 �C in vacuum for
24 hours before being transferred to the Stycast sample
chamber in a helium atmosphere. It was characterized by
series of 4He vapor pressure isotherms measured between
1.6 and 10 K [26], using an in situ capacitive pressure
gauge. The two-dimensional isothermal compressibility �T

was determined from the vapor pressure P as �T ¼
ð1=kBTn2Þ � ½@n=@ lnP�T, where n is the loading of the
pores expressed as an equivalent areal density, or coverage.
�T is found to exhibit two minima, the first (at n ¼ n1)
corresponding to promotion to states in the pore outside the
surface layer and the second (at nf) to full pores. The ratio

of the two minima (nf=n1¼1:65) is consistent with a pore

diameter of 2.3 nm, and in good agreement with measure-
ments carried out on FSM-16 of a similar pore diameter
[29]. Thus we estimate n1 ¼ 10 atoms nm�2, as measured
in that work.

Heat-capacity peaks attributed to the dimensional cross-
over to a 1D state have been observed for low density 3He
with n4 in the range 1:05n1 to 1:47n1 [14,22,23]. Therefore
in our experiments 4He was added up to n4 ¼ 1:12n1, then
NMR measurements were performed with 3He doses of
n3 ¼ 0:01n1 and 0:02n1, with subsequent additions of

4He
up to n ¼ n3 þ n4 ¼ 1:84n1. Figure 1(a) shows isotherms
of the spin-lattice relaxation time T1 and spin-spin relaxa-
tion time T2, here measured as a function of 4He dose with

fixed amount of 3He, 0:02n1. The relaxation times indicate
minima close to ‘‘full pores.’’ which we associated with the
compressibility minimum, and expect to imply a local
maximum in the correlation time of the motion.
Exploration of this feature at lower temperatures will be
the subject of future work. Figure 1(b) shows �T deduced
from vapor pressure isotherms taken simultaneously with
the NMR measurements, which is consistent with that
measured earlier [26].
We first measured the relaxation times T1 and T2 for n3 ¼

0:01n1 on pores preplated with n4 ¼ 1:12n1. We measured
T1 over the frequency range 80 to 240 kHz at 1.7 K. This is
shown in Fig. 2 for different total helium coverages. We

observed T1 / !1=2, characteristic of 1D diffusion of spins
as discussed in detail below. The relaxation times were
found to be independent of coverage on doubling the 3He
coverage to n3 ¼ 0:02n1. This suggests that relaxation is
governed by single-particle processes, as the spins relax

FIG. 1 (color online). NMR and thermodynamic properties of
3He-4He mixtures in nanopores as a function of total helium
loading n. Promotion to states in the pore outside the surface
layer occurs at n ¼ n1. (a) T1 and T2 for n3 ¼ 0:02n1 measured
at T ¼ 1:7 K and a Larmor frequency of 240 kHz. For most of
the coverage range 1=T2 was inferred from 1=T�

2 by subtracting

an estimated magnet contribution (open circles). This approach
was validated by a spin echo measurement at a high coverage
(open diamond). (b) Isothermal compressibility deduced from
vapor pressure measurements.
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through motion in the local magnetic fields arising from
impurities in the substrate, rather than through the intrinsic
mechanism of 3He nuclear dipole-dipole interactions.

This picture of impurity relaxation is consistent with
evidence from our earlier measurements [26] on the T1

relaxation of a surface 3He film, as we now discuss. In that
case, the temperature dependence of the relaxation times
showed a minimum in T1 of 0.55 ms at �2:9 K for a
coverage of n3 ¼ 0:88n1. According to motional averaging
theory [30] a minimum in T1 is observed when the corre-
lation time for local field fluctuations �c is the inverse of
the angular Larmor frequency 2��. The value of T1 at the
minimum is given approximately by ðT1Þmin � 2��=M2,
whereM2 is the second moment of the absorption line. For
a randomly oriented line of spins separated by d, the
dipole-dipole M2 is 0:91ð�0=4�Þ2ð@2�4=d6Þ; for a plane
of spins it is 2:9ð�0=4�Þ2ð@2�4=d6Þ; and for a cylindrical
tube it will be somewhere between. These all give a value
less than 108 s�2 for 3He at any realistic density. By
contrast we observed M2 ¼ 2:2� 109 s�2, indicating a
different source of relaxing magnetic fields. The observed
M2 would arise from paramagnetic impurities with a mean
spacing of order 2 nm.

On subsequent increases in 4He coverage the T1 / !1=2

dependence is preserved, as shown in Fig. 2. The conven-
tional expression for 1=T1 is [30]

1

T1

¼ Jð!Þ þ 4Jð2!Þ (1)

when the relaxation occurs through motional averaging
of internuclear dipole fields. Here Jð!Þ is the Fourier
transform of GðtÞ, the autocorrelation function of the local

field bðtÞ, the fluctuating local magnetic field seen by a
representative nuclear spin as it moves around. Thus

GðtÞ ¼ �2hbð0ÞbðtÞi; (2)

where the angle brackets denote an ensemble average. At
t ¼ 0 it follows that Gð0Þ ¼ �2hb2i ¼ M2, and GðtÞ ! 0
as t ! 1. While the short-time behavior of GðtÞ is
dependent on the detailed dynamics of the spins, the
long-time behavior is determined purely by the macro-
scopic hydrodynamic behavior. And very generally, in

this limit, GðtÞ � t�d=2 for diffusion in d dimensions
[31]. As a consequence of the Fourier transform relation
between Jð!Þ andGðtÞ it follows that the low frequency T1

is determined by the hydrodynamics of the motion.
This allows us to take a simple model for the correlation
function in one dimension: GðtÞ ¼ M2 for t < �c and

GðtÞ ¼ M2

ffiffiffiffiffiffiffiffiffi

�c=t
p

for t > �c. Here �c, the correlation time,
is essentially the time for a spin to travel a distance over
which its local field is correlated.
In the low frequency limit (!�c � 1) we obtain from

Eq. (1)

1

T1

¼ ð1þ 2
ffiffiffi

2
p Þ ffiffiffiffiffiffiffi

2�
p M2�

1=2
c

!1=2
: (3)

A similar analysis in two dimensions gives T1 approxi-
mately proportional to frequency [32], and in three dimen-

sions it varies as Aþ B!1=2.
However in our system relaxation occurs as a single-

particle process: the relaxing fields are not the dipole fields
of other 3He nuclei. In that case the double-frequency
term in Eq. (1) is absent and the corresponding expression
for T1 is

1

T1

¼ ffiffiffiffiffiffiffi

2�
p M2�

1=2
c

!1=2
; (4)

this is similar to Eq. (3), but with a different numerical
prefactor.

We emphasize that the emergent!1=2 dependence of the
low frequency T1 follows solely from the hydrodynamics
of 1D diffusion; it is independent of the details of the
relaxation process [33]. In the present measurements this
arises from classical one-dimensional diffusion, similar to
the 1D diffusion of water in nanotubes previously observed
by NMR relaxometry [34].
Fitting the data in Fig. 2 to Eq. (4) we obtain values for

M2�
1=2
c as a function of coverage. At n4 ¼ 1:12n1 we

obtain M2�
1=2
c ¼ 1:5� 105 s�3=2 at 1.7 K. Equation (4)

is valid in the low frequency limit (!�c � 1), and
given that our highest Larmor frequency is 240 kHz
this implies �c � 6:63� 10�7 s, and at this coverage
M2 	 1:9� 108 s�2. This is consistent with relaxa-
tion by magnetic impurities as observed in the pure 3He
experiments [26].

FIG. 2 (color online). Frequency dependence of T1 in the
mixture films at T ¼ 1:7 K for various helium coverages.
The T1 / !1=2 dependence (solid lines), characteristic of 1D
diffusion of spins, is preserved as n4 is increased. A fit to
all T1 data for n4 ¼ 1:12n1 to the expression T1 ¼ A!� gives
� ¼ 0:453
 0:08.
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As the 4He coverage is increased the observed relaxation

times increase implying a reduction in M2�
1=2
c . The tem-

perature dependence of T1 at various 4He coverages is
shown in Fig. 3 at a frequency of 240 kHz. At the higher
4He coverages T1 increases with decreasing temperature.
Interpretation of the temperature and coverage dependence
of T1 requires a knowledge of both the location of the 3He
in the film and the dynamics of the spins.

We can account for the observed behavior in terms of
intermixing of the two isotopes. We model the helium in
the pores as a two-component system: those atoms sitting
in the localized surface layer and those occupying the
quantum states within the pore. The proportion of 3He
spins in the surface layer depends on both temperature
and 4He coverage. The observation of a single relaxation
time suggests rapid interchange of spins between these two
components. We expect that the T1 relaxation time will be
shorter in the surface layer than in the mobile pore states.
If we assume that this is the dominant relaxation mecha-
nism then the effective T1 is simply given by 1=Te

1 ¼ f=Ts
1,

where f is the fraction of 3He spins in the surface layer and
Ts
1 is the surface layer relaxation time. Both increasing 4He

coverage and decreasing temperature reduce f leading to
an increase in the effective T1. Of course T

s
1 itself may have

a dependence on these quantities, which complicates the
analysis.

At low millikelvin temperatures, deep in the quantum
degenerate regime, the smaller surface binding energy of
3He arising from its higher zero point energy, will lead to
preferential adsorption of 4He in the surface layer. It should
therefore be possible, by careful tuning of the 4He cover-
age, to fill the surface layer with 4He, leaving a mobile
system of 3He in the azimuthal and radial ground states,
hence creating a one-dimensional system of tuneable line
density. Measurements in this temperature range will allow
a study of the relaxation times without the complication of

interlayer exchange and an investigation of the 3He
dynamics in the 1D quantum state.
Our work demonstrates the potential of SQUID NMR on

3He in nanotubes to investigate strongly correlated fermi-
ons in one dimension. We have resolved high quality NMR
signals from the relatively low spin density samples, nec-
essary to enter the quantum one-dimensional ground state.
This opens the way to low temperature measurements of
the 3He nuclear magnetic susceptibility; the ratio of this
quantity to the expected linear in T coefficient of the heat
capacity determines theWilson ratio, which in turn directly
yields the TLL parameter [35,36]. This quantity can be
studied as a function of 3He line density. For comparison
the Wilson ratio in bulk and 2D 3He, fixed by the Landau
parameter Fa

0 , is close to 4 and only weakly density de-

pendent, interpreted as evidence for the almost-localized
fermion model [19,37,38].
T1ð!Þ, in the limit !�c < 1, will determine the TLL

diffusion coefficient independent of the details of the
relaxation mechanism. This is of interest in the light of
controversy over the the nature of spin diffusion in the
S ¼ 1=2 Heisenberg spin chain, a spin TLL [39–41].
Although we have established that intrinsic 3He nuclear
dipole-dipole spin-lattice relaxation is currently masked by
the present level of magnetic impurities in the nanotube
wall, the potential of relating the observable 3He nuclear
spin relaxation and nonlinear spin dynamics to the charac-
teristic spin correlation functions of the TLL [42] requires
further investigation. We anticipate that the effective ex-
change interaction between 3He neighbors, which arises
from particle permutations, will be a strong function of
pore diameter and hence the structure of the wave function
transverse to the pore axis. This will control the transition
between a spin coherent and spin incoherent TLL [43].
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