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We show that a Bose-Einstein condensate of heteronuclear molecules in the regime of small and static

electric fields is described by a quantum rotor model for the macroscopic electric dipole moment of the

molecular gas cloud. We solve this model exactly and find the symmetric, i.e., rotationally invariant, and

dipolar phases expected from the single-molecule problem, but also an axial and planar nematic phase due

to many-body effects. Investigation of the wave function of the macroscopic dipole moment also reveals

squeezing of the probability distribution for the angular momentum of the molecules.
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Introduction.—A promising new direction in the field of
ultracold quantum gases is the study of dipolar gases with
heteronuclear molecules [1–3]. Recent progress in this
direction has already contributed to such diverse research
areas as atomic and molecular physics, quantum computa-
tion, and chemistry [4–6]. Indeed, the unique combination
of strongly anisotropic long-range interactions and the
quantum nature in these systems has brought to light a
number of striking phenomena, such as tunneling-driven
[7] and direction-dependent [8] ultracold chemical reac-
tions, as well as the shape-dependent stability of the gas
cloud [9].

The novel ingredient of heteronuclear molecules as
compared to neutral atoms is their large permanent electric
dipole moment, which opens the possibility for a strong
dipole-dipole interaction. Neutral atoms typically do have
a permanent magnetic dipole moment, but this leads to a
dipole-dipole interaction that is much weaker than in the
case of heteronuclear molecules, although it nevertheless
has observable effects in certain cases [10,11], in particular
when the scattering length is made small using a Feshbach
resonance [12–14]. In the absence of an external electric
field, however, the average dipole moment in the labora-
tory frame is zero, since the rotational ground state of the
molecule is spherically symmetric and the dipole moment
is thus randomly oriented. For that reason, virtually all
theoretical many-body studies are carried out in the limit
of a large dc electric field. In that limit the molecules are
completely polarized and the dipole moment in the labo-
ratory frame is maximal [15]. One notable deviation from
the large electric field limit is the discussion by Lin et al.
[16], which considers the effects of an almost resonant ac
electric field.

Going away from the large-field limit unmasks the
subtle interplay between the quantum-mechanical rotation
of the molecules, the long-range dipole-dipole interaction,
and the directing static electric field, which is the main
topic of this Letter. In particular, the molecular Bose-
Einstein condensate turns out to be a ferroelectric material
that is fully disordered by quantum fluctuations in the

absence of an electric field. This is illustrated by the phase
diagram of a Bose-Einstein condensate of heteronuclear
molecules in a harmonic uniaxial trap that is shown in
Fig. 1. The system possesses four phases: two nematic
phases (a planar nematic and an axial nematic phase), a
dipolar phase, and a fully symmetric phase that are sepa-
rated by smooth crossovers. Two order parameters are
relevant for this system. First, a nonzero average dipole
moment hdii defines the dipolar phase. Second, in the
absence of an average dipole moment the nematic (or
quadrupole) tensor Qij ¼ hdidj � �ijd

2=3i distinguishes

the other three phases. In particular, the nematic tensor is
equal to zero in the spherically symmetric phase. Two

FIG. 1. Phase diagram of the axially symmetric Bose-Einstein
condensate of heteronuclear molecules, where the probability
distributions for the dipole moment on the unit sphere in the
nontrivial phases are schematically indicated by the black areas
on the spheres. The vertical axis is the external electric field,
while the horizontal axis is the dipole-dipole interaction strength.
In this diagram, the fully symmetric phase exists only in the
origin. Shading corresponds to the ‘‘squeezing’’ parameter � in
Eq. (9), which runs from zero (white) to 0.09 (gray). The electric
field is at a �=4 angle to the symmetry axis of the cloud.
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eigenvalues are positive and one is negative in the planar
nematic phase, whereas one eigenvalue is positive and two
are negative in the axial nematic phase. It is worthwhile to
notice that even in the absence of any electric field, many-
body effects are crucial, giving rise to nematic ground
states in strong contrast to the dipolar and fully symmetric
ground states, expected from the single-molecule case.
We finally remark that the predicted phase diagram is
experimentally accessible by tuning three parameters in
the laboratory, namely, the electric-field strength, the trap
aspect ratio, and the number of particles.

Model.—We start from the single-molecule Hamiltonian

Hm ¼ p2

2m
þL2

2I
� d0d̂ �E; (1)

where m is the mass of the molecule, p ¼ �i@@=@x
is the center-of-mass momentum operator with x the
center-of-mass position, I is the moment of inertia of

the molecule, d0d̂ is the electric dipole moment operator,

L ¼ �i@d̂� @=@d̂ is the angular momentum operator,
associated with the rotation of the molecules, and E is
the electric field. To describe the interactions between the
molecules, we have to include both a contact (or s-wave)
interaction term [17]

Vs ¼ 4�@2a

m
�ðrÞ; (2)

and a dipole-dipole interaction term

Vdd ¼ � d20
4�"0r

3
ð3d̂1 � r̂d̂2 � r̂� d̂1 � d̂2Þ; (3)

where � is the Dirac delta function, a is the s-wave
scattering length, "0 is the electric permittivity of vacuum,

d0d̂1 and d0d̂2 are the dipole moments of the two interact-
ing particles, r is the vector connecting them, and r is
the distance between the particles. Finally, we consider
the molecular gas to be trapped in a harmonic axially
symmetric trapping potential

Vtrap ¼ m½!2
?ðx2 þ y2Þ þ!2

zz
2�=2; (4)

where !? and !z are the radial and axial trapping fre-
quencies, respectively.

For small electric fields,we are allowed to first solve for the
spatial part of the condensatewave function by only including
the effect of the s-wave interaction between the molecules.
This leads to a Thomas-Fermi profile that depends on the
s-wave scattering length [18]. The many-body ground state

wave function is now �ðr1; r2; . . . ; rN; d1;d2; . . . ;dNÞ ¼
�N

i¼1c TFðriÞc ðd̂Þ, whereN is the total number ofmolecules,

and d̂ is the direction ofd ¼ ðPN
i¼1 diÞ=N. Hence, the dipole-

dipole energy per particle is

VTF
dd ¼ � Nd20

4�"0

Z
drPðrÞ 1

r5
½3ðd̂ � rÞ2 � d̂2r2�; (5)

where P is the probability to find two particles a certain
distance apart. Subsequently, the many-body Hamiltonian
per molecule in this so-called single-mode approximation
[19] reduces to (cf. Sec. I of the Supplemental Material [20])

H ¼ L2

2I
� d0d̂ �Eþ Cddð3d̂2z � d̂2Þ; (6)

where Cdd is the effective dipolar interaction strength

Cdd ¼ d20N

4"0

Z
dz�d�PðRÞ 1

r3

�
3

2

�2

r2
� 1

�

; (7)

and we have introduced the radius in cylindrical coordinates
r2 ¼ �2 þ z2, the dimensionless radius R2 ¼ ð�=xTFÞ2 þ
ðz=zTFÞ2, the radial size of the cloud xTF, the axial size zTF ¼
�xTF, and the aspect ratio � ¼ !?=!z. We emphasize that
even though Eq. (6) describes the dipole degree of freedom
of the three-dimensional many-body system, it actually
has a form of a single-particle (and thus effectively zero-
dimensional) Hamiltonian, and thewhole Bose-Einstein con-
densate acts as a single quantum rotor.
In the Thomas-Fermi approximation the probability

P can be calculated analytically: PðRÞ ¼ 15ðR� 2Þ4ð32þ
64Rþ 24R2 þ 3R3Þ=7168��x3TF for R< 2 and zero oth-
erwise. The analytic expression for PðRÞ yields [21,22]
Cdd ¼ �5Nd20=½56�"0x3TF�ð�2 � 1Þ2�

�
�

�4 þ �2 � 2þ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
arc cot

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
��

;

(8)

which corresponds to one half of the mean-field dipolar
energy per particle in the case of fully polarized electric
dipoles [21,22]. Analogous results for magnetic dipoles
were obtained by other authors for spinor Bose-Einstein
condensates in the Gaussian approximation [23,24]. Note
that Cdd depends on the number of particles N and the trap
aspect ratio �. Thus, the only effect of varying the number
of particles is the change in Cdd.
The Hamiltonian in Eq. (6) represents a quantum rotor

model for the macroscopic dipole moment of the molecular
Bose-Einstein condensate, whose derivation is the main
result of this Letter. Interestingly, a similar Hamiltonian
applies to an atomic ferromagnetic spinor Bose-Einstein
condensate (cf. Ref. [25] for a quantum rotor model of
antiferromagnetic spinor condensates), but then without
the quantum rotor term [23]. The reason for this difference
is that the total (spin) angular momentum of the atoms is
fixed, whereas in the case of interest here the wave function
of the molecules is in general a superposition of states with
an arbitrary (rotational) angular momentum, whose energy
splitting is determined by the finite moment of inertia. Next
we are going to investigate the ground-state properties of
this quantum rotor model.
Results.—We have obtained the exact phase diagram

pertaining to this Hamiltonian by expanding the dipolar
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wave function in spherical harmonics (see Fig. 1). For zero
electric field and no dipole-dipole interaction, the ground
state of the system is a trivial spherically symmetric (non-
dipolar) state. However, turning on E or Cdd results in a
very different state. For zero Cdd and nonzeroE, we obtain
a dipolar state, where the probability distribution on the
sphere is concentrated around the direction of the electric
field. This state is classical in the sense that it is analogous
to a classical dipole in the electric field. Another limiting
case is E ¼ 0 and Cdd < 0, where we have an axial ne-
matic phase, and the probability is concentrated around the
north and south poles of the sphere. Finally, we have a
planar nematic phase for E ¼ 0, Cdd > 0, where the high
probability region is located around the equator of the
sphere. The last two phases are quantum mechanical, as
the ground state there is a coherent superposition of spheri-
cal harmonics with no average dipole moment. We observe
smooth crossovers between the nontrivial phases, as
expected due to the existence of quantum fluctuations in
this effectively zero-dimensional situation.

In addition to the coordinate-space probability distribu-

tion jc ðd̂Þj2, we investigate the probability distribution
with respect to angular momentum Pl. To that end, we
expand our wave function in terms of spherical harmonics:

c ðd̂Þ ¼ P
l;m�l;mYl;mðd̂Þ. Hence, Pl ¼

P
l
m¼�l Pl;m, where

Pl;m ¼ j�l;mj2 is the probability to occupy a state which

has angular momentum quantum number l and azimuthal
quantum number m. We find that this distribution has a
peak at l ¼ 0 for negative Cdd, and is peaked at l � 0 for
positive Cdd or nonzeroE. For larger values of Cdd and jEj,
the peak shifts towards larger values of l. Moreover, due to
the nature of the dipole-dipole interaction that conserves
parity, at zero electric field Pl is zero for odd l. We have
also investigated the distribution of probability between
different jl; mi states (see Fig. 2). In general, this distribu-
tion is symmetric (Pl;m ¼ Pl;�m) in every direction, imply-

ing that the average angular momentum hLi is always zero,
which is a consequence of time-reversal symmetry.

Noticing an anisotropic distribution of average dipole
moment probability on the sphere in our system for certain
parameters, it is natural to draw a parallel with the effect of
spin squeezing [26]. To that end, we define a matrix hLiLji.
This matrix describes the (Heisenberg) uncertainty in the
angular momentum of the system. It has three eigenvalues
that we order as follows: j�0j � j��j � j�þj. Hence, we
define a measure of angular momentum ‘‘squeezing’’ as

� ¼ j�þj � j��j
j�þj þ j��j ; (9)

which tells us how anisotropic the uncertainty of angular
momentum is (cf. Fig. 1). However, we must point out that,
strictly speaking, this effect is not identical to squeezing in
the usual sense, because hLii ¼ 0 and Pl;m is not always a

monotonically decreasing function of m (as can be seen
from Fig. 2).

Discussion and conclusion.—It is interesting to compare
the exact results described so far with mean-field theory
techniques commonly employed for atomic Bose-Einstein
condensates. Thus we turn to the Hartree approximation
(which is equivalent to solving the Gross-Pitaevskii equa-
tion) for an analysis of the Hamiltonian in Eq. (6). To that

end, we replace the operator d̂2i by d̂ihd̂ii. The effect of the
dipole-dipole interaction is then an additional static elec-
tric field of the form

Edd ¼ Cdd

d0
ðhd̂xi; hd̂yi;�2hd̂ziÞT; (10)

where the angle brackets indicate a quantum-mechanical
average, and Nhdi �Edd is the total average (Hartree)
energy of all the classical dipoles with a density distribu-
tion given by the Thomas-Fermi profile. Therefore, we now
have to solve the effective single-particle Hamiltonian

HMF ¼ L2

2I
� d0d̂ �Eeff ; (11)

where Eeff ¼ EþEdd is the effective electric field, which
now depends on the cloud geometry and the average dipole
moment.
The average dipole moment in this approach is deter-

mined in two steps. First, we calculate the average dipole
moment of the ground state hdiðEÞ from Eq. (11) (see, e.g.,
Ref. [4]). Second, we write down a self-consistency con-
dition, accounting for the effective electric field:

hdi ¼ hdiðEeffðhdiÞÞ: (12)

In the well-known case of a single molecule, Cdd is zero,
Eq. (12) has a single solution, and hdi always points in the
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FIG. 2 (color online). Probability P1;m of occupying a state
with total angular momentum 1 and its projection m. We have
chosen Cdd ¼ 0:1@2=2I and E ¼ 0:05@2=2Id0 (E is at a �=4
angle to the z axis) in order to maximize the anisotropy of the
state. The red squares correspond to the x0 direction, the green
circles correspond to the y0 direction, and the blue triangles
correspond to the z0 direction, where the axes are defined such
that the hd̂id̂ji matrix is diagonal and has its smallest eigenvalue

in the z0 direction.
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direction of E. However, this is not the case for the whole
(Cdd, E) space and therefore requires a more thorough
analysis. For small nonzero jCddj and E ¼ 0, there still
is only one solution, namely, hdi ¼ 0. For Cdd < 0 and
Ez � 0, the average dipole moment is always nonzero
[Eq. (12) has a single solution], as then we are dealing
with an Ising-like (easy-axis) model, and Ez couples
directly to the order parameter hdi. In contrast to this, three
solutions exist for Ez ¼ 0 and Cdd=jE?j sufficiently large
and negative. The two hdzi � 0 solutions are degenerate in
energy, while the hdzi ¼ 0 solution has a higher energy. On
the other hand, for Cdd > 0 we are dealing with an XY-like
(easy-plane) model and thus in that case one obtains a
similar nontrivial situation for E? ¼ 0 and Cdd=jEzj large
and positive.

When comparing the mean-field theory with the exact
diagonalization of theHamiltonian in Eq. (6), it is important
to notice that the mean-field ansatz explicitly assumes that
the average dipole moment is pointing in some direction.
Therefore, the nematic phases are absent from the mean-
field phase diagram. The fact that the dipole moment is zero
under the asserted conditions can be intuitively understood,
as the exact approach allows for a quantum superposition of
states that have oppositely polarized dipole moments and
are degenerate at the mean-field level. Finally, it is well
known that the mean-field theory does not give reliable
results in low dimensions because of the increased impor-
tance of quantumfluctuations. Sincewe are investigating an
effectively zero-dimensional Hamiltonian, it is no surprise
that the results of the mean-field theory differ significantly
from the exact calculation.

In our analysis we have relied on the single-mode ap-
proximation, which is applicable to Bose-Einstein conden-
sates with s-wave and dipole-dipole interactions [27].
However, we have not accounted for the dependence of
the cloud aspect ratio zTF=xTF on dipole-dipole interac-
tions. This limits the applicability of our analysis to the
regime where the dipole-dipole interaction is much weaker
than the mean-field s-wave interaction [23], i.e.,
jhdij2m=4�@2"0a � 1. For a typical diatomic molecule
with a mass of 80 atomic mass units, a scattering length
of 5 Bohr radii, and an electric dipole moment of 1 D, this
limits the external electric field strength to jEj � 1 kV=cm,
which translates to 2Id0E=@

2 � 0:05 in the units of
Fig. 1.We have also estimated that for a cloud of 107 particles
with a linear extent of around 1 �m, or radial trapping
frequency of approximately 2�� 80 kHz, assuming a
nearly two-dimensional trap with an aspect ratio of 1:10,
Cdd ’ 0:1@2=2I, which corresponds to the energy of
2�@� 1 GHz.

Besides the single-mode approximation, we have also
made an assumption that the s-wave scattering length
is independent of the dipole moment. Even though it has
been shown that such a dependence is present [28–31],
including it would merely add an extra self-consistency

equation to our approach. Its effect would be to change the
Thomas-Fermi radii and thus map the system to a different
point in the phase diagram. Therefore, all our results
remain qualitatively unaffected.
In summary, we have considered an interacting Bose-

Einstein condensate of dipolar molecules in a small static
electric field. We have solved this problem exactly in the
single-mode approximation and have also compared this
with the mean-field (Gross-Pitaevskii) approach. We have
found that the two approaches to the problem yield quali-
tatively very different results. Finally, we have put forward
an experimentally accessible phase diagram and investi-
gated the exact ground-state wave function both in coor-
dinate and angular-momentum space.
This work is supported by the Stichting voor
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