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Molecular dynamics can provide very accurate tests of classical kinetic theory; for example, unambig-
uous comparisons can be made for classical particles interacting via a repulsive 1/r potential. The plasma
stopping power problem, of great interest in its own right, provides an especially stringent test of a
velocity-dependent transport property. We have performed large-scale (~10*-10° particles) molecular
dynamics simulations of charged-particle stopping in a classical electron gas that span the weak to
moderately strong intratarget coupling regimes. Projectile-target coupling is varied with projectile charge
and velocity. Comparisons are made with disparate kinetic theories (both Boltzmann and Lenard-Balescu
classes) and fully convergent theories to establish regimes of validity. We extend these various stopping
models to improve agreement with the MD data and provide a useful fit to our results.

DOI: 10.1103/PhysRevLett.111.215002

The nonequilibrium statistical mechanics of particles
interacting via long-range forces is an outstanding chal-
lenge. Many-body simulations can provide insight into the
wide range of complex behaviors that result [1-4].
Simulations are particularly valuable for model validation
when precise data are lacking in high energy-density phys-
ics experiments [5,6]. Whereas most transport phenomena
represent averages over thermal velocities, charged parti-
cle stopping depends on a single projectile velocity. Thus
stopping power provides a velocity-resolved probe of the
underlying collision integrands and offers greater insight
into the accuracy of energy and particle flow models,
including temperature relaxation [7-9], diffusion [10,11],
and electrical and thermal conductivity [12,13]. Improved
knowledge of stopping power in high energy-density phys-
ics environments also directly impacts ion-based fast igni-
tion [14], alpha particle deposition in thermonuclear fuels
[15], and heavy ion fusion [16].

Because molecular dynamics (MD) cannot include
quantum scattering and recombination exactly, we con-
sider a purely classical repulsive Coulomb system of a
negatively charged point projectile interacting with a one
component electron gas target. Theoretical models can be
formulated identically, so the MD provides a rigorous test
of stopping power models [17]; insights can then be
extrapolated to real matter. Within this system we vary
both the intratarget and projectile-target coupling over
large ranges to provide the greatest insight into the models.
We vary the target temperature at fixed density to span
weak to moderately strong intratarget coupling, and we
vary projectile charge and velocity to influence projectile-
target coupling.

In this Letter, we compare theoretical models of
charged-particle stopping [17-24] with numerically exact,
classical, nonrelativistic MD simulations. The underlying
kinetic theories were chosen from the Lenard-Balescu
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(LB) class (weak scattering in a dense environment), the
Boltzmann (B) class (strong scattering in a dilute environ-
ment), and convergent kinetic theories (CKT) [25]. We
delimit regions of validity for these various models and
quantify the importance of strongly coupled nonlinear
binary collisions and collective phenomena. We develop
nonlinear screening models (beyond Debye-Hiickel) to
better describe these effects and obtain accurate expres-
sions for classical stopping. We introduce a new formula
for classical charged particle stopping which is more accu-
rate over a larger parameter space compared to commonly
used expressions.

Our simulations use the massively parallel MD code,
ddcMD [26,27], to treat long range forces. We varied the
target temperature at fixed density n, = 1.03 X 10 cm ™3
to obtain three values for the intratarget coupling parameter
I =¢q2/(r,T) = 0.1, 1, 10. Here, g, is the target charge, T
is the target temperature in energy units, and ry =
(47rn,/3)~1/3 is the Wigner-Seitz radius. Projectile-target
coupling was varied by selecting three projectile charges
Z= -1, —2, —10 with projectile and target-particle
masses consistent with the magnitude of the charge:
m = my, Mye, MNe, M,. Together these conditions define
a matrix of nine physical conditions. For each of the nine
cases, projectile velocities were selected in the range

v/vy ~ 0.1-40, where vy, = 4/T/m, is the thermal veloc-
ity of the target particles.

Converged stopping behavior for the fastest projectiles
considered required a numerical time step of 107> to
10~* fs. Long simulations were performed, typically 100
fs to relax transients followed by 300 fs (172 w,, 1y of data
collection. For fast projectiles, a weak Langevin thermostat
(decay time 30-100 fs) was used to suppress target heating
by the projectile; this did not affect the stopping. Fast
charged particles generate wake potentials of large spatial
extent, problematic for a finite simulation domain with
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periodic boundary conditions. Prior work [28,29] corrected
for the missing long-wavelength contributions using a
model. To avoid such a model dependence we employed
large cubic cells (10-100 Debye lengths on an edge, or
roughly 64 K — 1 M particles) and chose the initial projec-
tile velocity to be a permutation of © = (1, \/&, ¢), with
¢ = (1 + /5)/2, the golden ratio, minimizing overlap or
interaction with periodic projectile wakes. Our MD results
are shown in the Figs. 1, 2, 4, and 5. Multiple independent
replicas establish error bars; nearly 900 simulations
are included. We plot the stopping power, —dE/dx,
versus velocity #, where dE/dx = (dE/dx)(1 + g)*3/
(Z2q%/23), & = v/[ve(1 + )'/3], ¢ =+B|ZI[*2, and
Ap = ro/ V3T is the Debye-Hiickel (DH) screening length.
We find that the stopping rates determined by our MD
simulations are accurately described by the expression
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Here, a = 4exp(—27y), v is Euler’s constant, 0.577216. . .,
s =d(1 + cg)'?, w = v/(vys), and the fit parameters are
a=1.04102 X 1073, b = 0.183260, ¢ = 0.116053, d =
0.824982, and g, = 2.03301 X 1073. Equation (1) is
Eq. (35) of Ref. [30] evaluated at g = g, with an altered
Coulomb logarithm, the velocity rescaled by s, and the
stopping power rescaled by M; and M, at low and
high velocities, respectively. Its low velocity limit is
—(1+ g In{l + ae™ 2 /[g(1 + agZ*) (v /vy)W2/9.
which matches the Brown-Preston-Singleton (BPS) model
[19] at weak coupling and our MD simulations at strong
coupling. The Bohr limit [1In(x®/g)/u?] [31] is preserved
with the inclusion of M,. The fit parameters, b, ¢, and d
allow a good representation at moderate velocities.
Equation (1) may be used to describe the light ionic
component of heavy ion stopping power if the screening
length is greater than the interparticle spacing, or the
electron component if the classical distance of closest
approach and the screening length are much greater than
the thermal de Broglie wavelength. Over our nine simula-
tion conditions, this fit has a maximum and root mean

r=01,Z=-10
MD == NRL ]
=== BPS

FIG. 1 (color online). Comparisons with three models (NRL,
BPS, and LP) are made with the MD data for I' = 0.1, 1, and two
projectile charges Z = —1, —10. The fit of Eq. (1) is given by
the thin black line.

square error of 0.03 and 0.005, respectively, in units of
2g2(1 + g) "3/ A3,

Figure 1 compares Eq. (1) and our MD results to three
models that are in wide use: the result from the NRL
Plasma Formulary (NRL) [21], the BPS model [19], and
the Li and Petrasso (LP) model [22]. We have evaluated the

LP model with the u appearing in LP given by 4/v3 + v?

and the NRL model using the Coulomb logarithm A =
23 — In[|Z|(T/eV)3/2(n,/cm™3)"/2]. For T' =0.1 and
Z = —1 the BPS model works well, the NRL model fails
at high velocities, and the LP model suffers at the peak due
to the use of a Heaviside theta function in its high-velocity
correction. Other cases show larger deviations, particularly
at low velocities when their Coulomb logarithms change
sign. Only Eq. (1) matches the simulations for all
conditions.

Figure 2 shows MD results for the four extreme limits of
our nine cases; other cases give results between those
shown. We compare the MD data with models of the LB
class, which assume weak scattering with dynamical
screening, thereby including many-body effects without
invoking an ad hoc long-wavelength cutoff. This allows
us to address three issues: the boundaries of a common
LB-class model with respect to the three effective coupling
parameters, the appropriate short-range cutoff, since the
neglect of strong scattering in LB models leads to a diver-
gence for classical systems, and the importance of dynami-
cal screening. We will use these points for constructing
improved models below. In Fig. 2 we plot

dE o Im[e(g, @)]
i d [ dqq

Tle(q, o)
where g = kAp, @ = w/(kvth), u=v/vy, and Q gives
the short-range cutoff. We evaluate the dielectric response
using the random-phase approximation (RPA) [30], setting
B to zero or one selects static (SRPA) or dynamic (DRPA)

screening, respectively. Traditionally, the cutoff Q is
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FIG. 2 (color online). Three LB-class stopping models, the
Bohr model, and the MD data are shown for the four extreme
cases in our data set. MD data (black points) are shown with
five theory curves: the Bohr limit (solid orange), dynamic RPA
velocity-dependent cutoff (dashed blue), dynamic RPA velocity-
independent cutoff (dot-dashed red), and static RPA velocity-
dependent cutoff (dotted green). The use of the velocity
dependent cutoff with RPA is accurate everywhere except for
small to moderate velocity. The fit of Eq. (1) is given by the thin
black line.

chosen to correspond to the distance of closest approach,
Ovic = ApT/Zqg% = 1/g, which we will refer to as the
velocity independent cutoff (VIC). The VIC fails to pro-
duce the proper Bohr limit [31], dE/dx = — In(u?/g)/ 17,
so we also examine a velocity dependent cutoff (VDC) of
the form Qypc = Qvic(1 + u?) [28,29]. From Fig. 2 we
see that dynamical screening and a VDC are both needed to
reproduce the MD data at high velocity. While the static
screening model (8 = 0) is accurate at low velocities for
the weakest coupling, I' = 0.1, it is not generally useful.
As with the models in Fig. 1, the model given in Eq. (3)
tends to fail when either (projectile-target or intratarget)
coupling parameter is large, with the most egregious errors
at low velocity.

We now turn to the B class of models, which employ a
binary cross section, and thereby include strong scattering.
Because the bare Coulomb cross section has a long-
wavelength divergence, we show T-matrix results that
include many-body screening effects. This is typically
included [28] with a projectile-target interaction of the
DH form V,,(r) = Ze* exp(—r/Ap)/r. We compute the
cross section numerically (see Ref. [32]). This DH-based
T-matrix model is limited to weakly coupled plasmas for
three reasons: 7-matrix assumes an effective binary scat-
tering, the colliding particles are uncorrelated, and DH
screening is a linear, mean-field result. We remove the
limitation of DH screening by computing the projectile-
target interaction using the nonlinear Poisson-Boltzmann
model and solving the hypernetted chain (HNC) equations
[33] for the two-component plasma in the limit of one
species (projectile) having vanishing concentration (see
Ref. [34] for a similar usage of HNC). The nonlinear
screening results are shown in Fig. 3, in which we see

2=
5.00 10.00

0.50 1.00
r/Ap

FIG. 3 (color online). Differences AV in nonlinear screening
potentials from the linear mean field (DH), nonlinear mean field
(PB, dashed), and beyond mean field (HNC, solid) are shown for
three values of the Coulomb coupling constant.

large deviations from DH for I' = 1, 10. It is a limitation of
the T-matrix formulation for strongly coupled plasmas that
nonlinear screening potentials are not symmetric with
respect to projectile and target. This leads to an ambiguity
in the potential used in the cross section calculation. In the
nonlinear case, a projectile-target binary interaction is
different depending on whether the target particle or the
projectile is considered to be screened by other nearby
target particles. We chose the former because it isolates
the projectile exchanging energy with the target. However,
neither viewpoint is correct, and when the two predictions
differ significantly neither is accurate. In all cases the
screening models are static and the 7-matrix method can-
not accurately describe the projectile velocity dependence.
We have shown this to be important in Fig. 2; thus, in Fig. 4
we only show low velocity results. In general we see that
the T-matrix results yield a considerable improvement over
those in Fig. 2 at low velocity at all coupling parameters, a
regime important for alpha particle stopping [15].

In the limits of low velocity and large projectile-target
mass ratio, Dufty and collaborators [35,36] have shown an
exact relationship between the stopping power and the
diffusion coefficient, D: dE/dx = —vT/D. Of course,
this formula only shifts the difficulty to D, which can be
obtained from MD via the velocity autocorrelation func-
tion (VACF). Hughto et al. [37] already did this calculation
and provide a fit to their MD data (I' > 1). We use their fit
with the mass equal to our target particles [38,39]. Low
velocity stopping is fundamentally described by a non-
binary, nonlinear model, since the VACF contains the
many-body physics of a particle entrained in a collective
background. Our results are shown in Fig. 4, which are in
excellent agreement with the MD data at low velocity at
I' = 1 and 10, despite the fact that the D used was for an
equal mass system. Because weakly coupled data were not
used to train the fit, the deviations at I' = 0.1 are not
surprising.

To improve upon the poor velocity dependence of the
T-matrix models, we also compare with CKT models [25].

215002-3



PRL 111, 215002 (2013)

PHYSICAL REVIEW LETTERS

week ending
22 NOVEMBER 2013

04fT=01,2="14" r=01,z=-10
] i + === Diffusion

03 == SLFC

0 2 w— HNC

wess PB
smsDH ¢ = __ae==="]

0.1
0.0

04
03
0.2
0.1}
00

04
03¢
0.2}
0.1
00

—dE/dx

00 02 04 06 08 1.0 0.0 02 6.4 06 08 10
v

FIG. 4 (color online). T-matrix stopping power using three
different screening potentials, Debye-Hiickel (dot-dashed
blue), Poisson-Boltzmann (dotted green), and HNC (solid red),
shown with the diffusion model (short-dashed purple), SLFC
(long-dashed orange), and MD data (points). The T-matrix
model has the (known) defect of being inaccurate at high
velocity, although the nonlinear screening potentials greatly
improve the low velocity stopping power whenever the target-
projectile coupling is large.

Because of its partial success (see Fig. 2), we modified the
DRPA VDC model to include static local field corrections
(SLEC) G;;(k) for the projectile-target mixture, including
both a 1 — G,,(k) in the target dielectric function and a
projectile-target factor 1 — G ,,(k) in the numerator of the
integrand in Eq. (3): this serves to make the LB model
convergent while also including many-body physics in the
short-wavelength cutoff. We see in Fig. 4 that this greatly
improves the low velocity results. Dynamic LFCs would be
needed for the model to apply at all velocities. The Gould-
Dewitt (GD) model [40], which constructs a CKT by
employing both LB and B type features, is compared
with the previously presented CKT BPS model. A model
developed previously [28,29,41] that employs a velocity-
dependent DH screening length is also considered, and we
extend that to our nonlinear potentials. Our velocity-
dependent scaling procedure scales all lengths L in the

potential as L — L\/ 1+ u?(1 + T3)!/4, which empirically
extends the prior work to strong coupling. The CKT com-
parisons are shown in Fig. 5 for the four corner cases of our
data set. The models in this class agree very well at weak
coupling. The GD model either offers no improvement
over simpler models or does poorly. Comparison with the
MD data reveals that the best model overall is our 7-matrix
model with velocity-dependent HNC screening.

In summary, we have produced accurate molecular
dynamics results for charged particle stopping using
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FIG. 5 (color online). A comparison of CKT models are
shown, including BPS (dot-dashed red), GD (dashed blue), and
improved T-matrix models that employ velocity-dependent
screening lengths of two types [HNC (dotted green) and DH
(solid orange)].

simulations that cover a broad range of projectile-target
couplings, intratarget couplings, and projectile velocities.
These simulations employ orders of magnitude more
particles than previous studies, allowing us to simulate
long-wavelength wake structures. Our simulations utilized
a purely classical plasma to allow for a model-independent
comparison with theoretical models. We have provided a fit
that accurately matches our MD results across the full
range of temperature, velocity, and projectile charge we
studied. We have compared our results with a very large
range of differing theoretical models that originate from
disparate branches of kinetic theory. Our data have allowed
us to evaluate several stopping power models that are in
wide use. We find that models in the LB class yield
accurate results for high velocity and any coupling parame-
ter, provided that a velocity-dependent cutoff and dynami-
cal screening are used. However, low velocity stopping is
poorly predicted by LB models for the more strongly
coupled cases, which can be improved by the inclusion
of LFCs. In the B class we compared our data with
T-matrix models, including a new model that includes
nonlinear screening. While these models yield good results
for low velocity, they are quite inaccurate at even moderate
velocities. We find that while the nonlinear screening is a
marked improvement, there are ambiguities in its imple-
mentation because there is no unique nonlinear potential to
be used in a binary cross section. To bridge the gap
between LB and B class models we also considered CKT
models. We find that the CKT models are in excellent
agreement with each other for weak coupling. For strong
intratarget coupling, the GD and BPS models fail, with the
best model being our T-matrix model that employs HNC
screening and a velocity-scaled screening length. Finally,
we have compared our MD data with a stopping power
model that relates stopping to diffusion and find very good
agreement at low velocities, where that relationship should
be accurate. Our MD results can readily distinguish among
a very wide range of theoretical models.
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