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Quantum corrections to three-point functions of scalar single trace operators in planar N ¼ 4 Super-

Yang-Mills theory are studied using integrability. At one loop, we find new algebraic structures that not

only govern all two-loop corrections to the mixing of the operators but also automatically incorporate all

one-loop diagrams correcting the tree-level Wick contractions. Speculations about possible extensions of

our construction to all loop orders are given. We also match our results with the strong coupling

predictions in the classical (Frolov-Tseytlin) limit.
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Introduction.—In this Letter we consider three-point
correlation functions (3P CFs) of single trace gauge invari-
ant operators of planar N ¼ 4 supersymmetric Yang-
Mills (SYM) theory. We consider mostly the first quantum
correction (one loop) to the leading result (tree level) of [1]
and speculate about some all-loop features at the very end.
The motivation for this study is twofold. The spectrum of
dimensions plus the 3P CFs are the most fundamental
objects in a conformal field theory. Computing them non-
perturbatively is a highly ambitious goal which is believed
to be attainable due to the integrability, or exact solvability,
of planarN ¼ 4 SYM [2]. Another motivation is to better
understand holography and the emergence of a dual string
description of a quantum gauge theory. How do smooth
string world sheets come about? Do they have a natural
integrable description in N ¼ 4 SYM? Three-point cor-
relation functions might be a great playground for address-
ing some of these questions. In particular, as we will
reinforce in this Letter, the answer to the last question
seems to be yes; three-point functions can be studied
most efficiently using integrability.

Two-loop eigenstates.—To compute the correlation
functions at one loop we need to solve the two-loop
mixing problem. As in [1], we consider operators made
out of two complex scalars (which are identified with
states with " and # spins) that diagonalize the dilatation
operator [3]

Ĥ ¼ ð2g2 � 8g4ÞX
L

i¼1

Hi;iþ1 þ 2g4
XL
i¼1

Hi;iþ2 þOðg6Þ: (1)

Here Ha;b � I� Pa;b, with P being the permutation op-

erator, and sites Lþ 1 and 1 are identified. The funda-
mental excitations are magnons (spins # ) moving in a
ferromagnetic vacuum (where all spins are " ). Their

energy and momentum are parametrized as EðuÞ ¼
2ig2ð1=xþ � 1=x�Þ and pðuÞ ¼ i logðx�=xþÞ where the
Zhukowsky variables x� ¼ ðu� i=2Þ � g2=ðu� i=2Þ þ
Oðg4Þ. The simplest state diagonalizing (1) is the single
magnon

XL
n¼1

�
xþ

x�

�
nj" � � � "|fflffl{zfflffl}

n�1

#" � � � "i: (2)

At leading order in perturbation theory, there is an equiva-
lent description of the states using the algebraic Bethe
ansatz formalism (see [1] for a review). For example, the
single magnon state (2) simplifies to

X
n

�
uþ i=2

u� i=2

�
n
��

n j " � � � "i / B̂ðuÞj " � � � "i (3)

where the creation operators are given by

with the R matrix given by

The algebraic treatment reveals its elegance when we
consider states with N interacting magnons. This multi-
particle state is simply given by

B̂ðu1Þ � � � B̂ðuNÞj " � � � "i: (5)

Each of the legs in Fig. 1 corresponds to one such a state.
The energy of these states is given by

P
EðuiÞ ¼ 2g2�u,
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�u ¼ XN
i¼1

1

u2i þ 1
4

þOðg2Þ:

At tree level we should contract the states as in Fig. 1 [1].
At the next loop order we need to improve (5) to obtain

the two-loop spin chain eigenstates. There are no explicit
expressions for the finite volume eigenstates in the litera-
ture (for a description up to boundary terms see [4,5]). We
will now describe how to construct them using a modifi-
cation of the algebraic Bethe ansatz. From (3) we see that
we want to modify the propagation of the magnon along
the chain to get the correct dispersion relation. The sim-
plest way to achieve this preserving integrability is to
introduce impurities (or inhomogeneities) �j at each site

converting (4) into

With these modified creation operators, the single magnon

state B̂ðuÞj " � � � "i takes the form
XL
n¼1

�Yn�1

k¼1

u� �k þ i
2

u� �k � i
2

�
i

u� �n � i
2

j" � � � "|fflffl{zfflffl}
n�1

#" � � � "i: (7)

The idea is to use the impurities �k to realize the required
correction to the dispersion which arises at two loops. To
achieve this, we introduce the differential operator

ðfÞ� � fþ g2

2

XL
i¼1

ð@�i � @�iþ1
Þ2fj�j!0 þOðg4Þ (8)

which we call the �-derivative. Here @Lþ1 is identified
with @1. It is easy to verify that applying the �-derivative
to (7) we reproduce the good state (2) modulo, a simple
mismatch at the boundaries for the n ¼ 1, L terms in (2).
What is way more remarkable is that, not only can that
mismatch be fixed, but in fact,

ð1� g2�uHL;1ÞðB̂ðu1Þ � � � B̂ðuNÞj " � � � "iÞ� (9)

yields perfectN-magnon eigenstates of the two-loopN ¼
4 SYM dilatation operator [6].
3P functions with impurities.—The contractions between

operators O3 and the other two operators are trivial, see
caption of Fig. 1. The ones between O3 and O2 are simply
contractions of L3 � N3 " spins while the contractions
between O3 and O1 involve N3 # spins. That is, the effect
of the operator O3 is to remove a piece of ferromagnetic
vacuum of length L3 � N3 from O2 and replace it with a

sequence of magnons of length N3. In formulas, j2i �
B̂ðv1Þ � � � B̂ðvN2

Þj "i�L2 ! Ô3j2i where [7]
Ô 3 ¼ ðj #i�N3Þð�L3�N3h" jÞ: (10)

The operator Ô3j2i, of lengthL1, should be contracted with

O1 given by j1i � B̂ðu1Þ . . . B̂ðuN1
Þj "i�L1 . For simplicity,

we will consider the case where the third operator O3 is a
chiral primary. Then, the (absolute value of the properly
normalized) tree-level 3P function with impurities is
simply [1,8]

jCtree with imp
123 j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1L2L3

p
ffiffiffiffiffiffiffiffi
ðL3
N3
Þ

q jh1jÔ3j2ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih1j1ih2j2ip : (11)

Let us specify which impurities we use in (6) when con-
structing j1i and j2i. Each thin line in Fig. 1 has its own
impurity. The impurities associated with the contractions
between operator On and Om are denoted by f�nmj g. We

define f�1j g ¼ f�12j g [ f�13j g, etc. Explicit expressions for the
scalar products in (11) are presented in the appendix. The
tree-level resultCtree

123 inN ¼ 4 SYM is given by (11) if we

send all impurities to zero. The impurities will be important
when extending this expression to one loop.
One-loop 3P functions.—When computing 3P CFs at

one loop, two effects need to be taken into account:
(a) we need to correct the one-loop operators into the
two-loop Bethe eigenstates and (b) add insertions of
Hamiltonians at the splitting points [7,9]. The first effect
leads to (11) where we replace the one-loop states by the
two-loop eigenstates constructed via (9) and indicated by
boldface,

jCone loop ðaÞ
123 j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1L2L3

p
ffiffiffiffiffiffiffiffi
ðL3
N3
Þ

q jh1jÔ3j2ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih1j1ih2j2ip : (12)

To compute this quantity we start with a tree-level scalar
product with impurities such as h1j1i. Then we act with the

O2

O3

O1

FIG. 1 (color online). Tree level CF of three single trace
operators. Each operator Oi is obtained by acting on a vacuum
with a set of Ni creation operators (blue thick lines). This
generates a state with Li spins (thin black lines), Ni of which
are flipped. These states are then glued together. We end up with
a vertex model partition function with the topology of a thrice
punctured sphere; it strongly resembles a discrete string path
integral. We have N1 ¼ N2 þ N3 so all spins # from O2 and O3

are contracted with O1. Since there are N3 thin lines connecting
O1 andO3 all those lines are # spins; see section 4.1 of [1] for the
precise description of this SU(2) setup.
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�-derivative (8) on it. When this differential operator acts
on j1i we get j1i up to a simple boundary term (9). Same is
true for h1j. Then we also have the crossed terms when one
of the derivatives in (8) acts on j1i and another one acts on
h1j. These can be dealt with using

ið@�j � @�jþ1
ÞB̂ðuÞj�!0 ¼

�
Pj;jþ1 þ �j;L

XL
i¼1

Hi;iþ1; B̂ðuÞ
�
:

At the end of the day, we find [6]

h1j1i ¼ ½1� g2ð�2
u þ 2�uÞ�ðh1j1iÞ�1

and an analogous expression for h2j2i. Similarly, for the
numerator, we find

jh1jÔ3j2ij

¼
��������
�
1� g2

2
ð�2

u þ 2�u þ �2
v þ 2�vÞ

�
ðh1jÔ3j2iÞ�1

þ g2h1jHL12�1;L12
Ô3j2i þ g2h1jÔ3HL12�1;L12

j2i
þ g2h1jHL1;1Ô3j2i þ g2h1jÔ3HL2;1j2ij (13)

where L12 ¼ L1 � N3. For the last two lines we should set
the impurities to zero. Two remarkable things happen when
we put everything together. First, all the �u and �v cancel
out when we construct the ratio (12). Second, the last two
lines in (13) are nothing but Hamiltonian insertions at the
splitting points (see Fig. 2). They cancel precisely with the
Hamiltonian insertions which come from adding up all
Feynman diagrams, correcting the tree-level Wick contrac-
tions [9]. As such, when the dust settles, we end up with our
main result

jCone loop
123 j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1L2L3

p
ffiffiffiffiffiffiffiffi
ðL3
N3
Þ

q jðh1jÔ3j2iÞ�1 j
ð ffiffiffiffiffiffiffiffiffiffih1j1ip Þ�1ð

ffiffiffiffiffiffiffiffiffiffih2j2ip Þ�2
(14)

for the structure constants up to one loop [10]. The striking
simplicity of this result signals a deeper structure which the
�-derivative starts to unveil. The derivatives in (14) can be
explicitly computed with ease [6].

Comparison with string theory.—The strong coupling
regime of N ¼ 4 SYM theory is described by classical
strings. Our results are, strictly speaking, valid at weak

coupling. Yet, we shall demonstrate that in a particular
limit they coincide precisely with the string theory results.
The limit where one might expect a match is the Frolov-

Tseytlin limit [11,12]. This is the limit of large operators
Li � Ni ! 1 but with g=Li � 1. We will use the results

of [13] whereO1 ’ Oy
2 correspond to two similar classical

strings while O3 is a small BPS string. The closest we can
get to the Frolov-Tseytlin limit for all operators is then

1 � N3; L3 � g � L1; L2; N1; N2: (15)

This is the limit we consider. As in [14], we will use the
SU(2) folded string solution which is simple enough to
work with and has a rich structure at the same time. We
also take L3 ¼ 2N3 for the small operatorO3. The result is
then a function of 3 parameters only: � � N1=L1, L1 and
N3. The tree-level weak coupling result matches the lead-
ing order expansion in g=L1 of the string theory result,
denoted as Ctree

123 [14] (see also [15]). For the next order, we

find

Cstring
123

Ctree
123

’ 1þ g2N3

L2
1

�
32�ð1� 2qÞE2ðqÞ

ð�� 1Þð�2 � 2�qþ qÞ þO

�
1

N3

��

(16)

where qð�Þ is related to � via � ¼ 1� EðqÞ=KðqÞ.
A remarkable feature of this strong coupling result is that
it resembles a weak coupling expansion in g2.
To compare with this result, we found the corresponding

solution of the two-loop Bethe ansatz equations for several
values of L1, N1, and N3 with very high numerical preci-
sion (see [14] for details on the g0 Bethe roots). Then we
plug the Bethe roots into (14) and extrapolate the result to
infinite length by increasing N1 and L1 with fixed ratio �.
We find that the one-loop correction (normalized by the

FIG. 2 (color online). To take into account the loop diagrams
correcting the Wick contractions of the operators one must insert
Hamiltonian densities at the junctions of the operators [7,9].
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FIG. 3 (color online). fðN3; �Þ=N3 for several �’s as a func-
tion of N3. The solid lines are fits in (large) N3. The dashed lines
are the strong coupling string theory results (16). The fits
asymptote to the dashed lines within the numerical accuracy.
To build this figure we considered in total about 1000 combina-
tions of three states with up to 56 magnons and lengths as large
as 450. This computation would be very difficult without our
main result (14).
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tree-level result) decays indeed as fðN3; �Þ=L2
1 as L1 goes

to infinity. The values of fðN3; �Þ for various N3, � are
shown in Fig. 3. We observe that fðN3; �Þ increases line-
arly with N3. To compare with (16), we found the leading
linear term in N3 with a fit. Note that a priori it is not
obvious at all that the weak coupling result (14) scales as
N3=L

2
1. The fact that it does is already encouraging. Of

course, even more striking is the fact that the coefficient
matches precisely the string result (16), see Fig. 3.

Curiously, at tree level the weak and strong coupling
results match for any finiteN3 [14]. The numerical analysis
at one loop indicates that there is no agreement for finite
N3; only the leading term in large N3 matches (16).

Conclusions and musing.—There is a longstanding idea
that the complexity of the long-range integrable structure
of the AdS/CFT system might come from integrating out
some hidden degrees of freedom [16,17]. The impurities �j
and the �-derivative realize this idea at weak coupling.
Particularly inspiring is the fact that the �-derivative not
only corrects the states but it also automatically incorpo-
rates all one-loop Feynman diagrams involved in gluing
together the three operators.

As we saw, the �-derivative naturally leads to the
Zhukowsky variables. For example the norm ðh1j1iÞ�1 takes
the form (A1) where in �k we replace [6]

YL1

a¼1

uk � �ð1Þa þ i=2

uk � �ð1Þa � i=2
!

�
xþk
x�k

�
L1

: (17)

This leads to the natural guess that, to all loops, we should
simply deform the dispersion and S matrix in �k as in the
spectrum problem. The same comments hold for the main
part of the numerator of (14), the matrix Gnm written in the
Appendix. Hence, with some insight from the spectrum
problem, with the help of the �-derivative method, and
with the inspiration of the Inozemtsev approach [17], we
believe that a conjecture for the all loops structure con-
stants might be within reach for asymptotically large
operators. A first step could be to understand in detail the
single magnon case which was so fruitful at one loop. For
example, if in (8) we have

Oðg4Þ ¼ g4

8

X
ji�jj�1

ð@�i � @�iþ1
Þ2ð@�j � @�jþ1

Þ2fþOðg6Þ

then the action of the �-derivative on the single magnon
state (7) yields (2) up to three-loop order modulo simple
boundary terms. We believe that the same holds for multi-
particle states. Then, a natural conjecture is that (14) holds
up to two loops. This is being investigated [18]. At higher
loops, one could try to incorporate the dressing phase using
the boost operator of [5].
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Appendix: Formulae for scalar products.—We have

h1j1i ¼ Y
m�k

uk � um þ i

uk � um
det

j;k	N1

@�k

@uj
(A1)

with ei�k ¼ QL1

a¼1ððuk � �ð1Þa þ i=2Þ=ðuk � �ð1Þa � i=2ÞÞ
QN1

m�kððuk � um � iÞ=ðuk � um þ iÞÞ and similar for

h2j2i. Finally [8] h1jÔ3j2i ¼ F detð½Gnm� � ½Fnm�Þ where
Fnm¼ð1=ððun��mÞ2þð1=4ÞÞÞ,Gnm ¼ Q

L
a¼1ððvm � �ð1Þa þ

i=2Þ=ðvm��ð1Þa � i=2ÞÞððQN1

k�nðuk�vmþ iÞÞ=ðun�vmÞÞ�
ððQN1

k�nðuk � vm � iÞÞ=ðun � vmÞÞ, F ¼ððQN3
m
QN1

n ðun�
�ð1Þm þ i=2Þ=QN3

m
QN2

n ðvn��ð1Þm þ i=2ÞÞ=ðQN1
n<mðum�unÞ
QN2

n<mðvn�vmÞ
QN3

n<mð�ð1Þn ��ð1Þm ÞÞÞ. As emphasized in [7],
the fundamental building blocks are scalar products and
norms of Bethe states. For seminal references on these
objects see [19] and references therein.
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