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There are a number of important thought experiments that involve raising and lowering boxes full of

radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought

experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-

weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider

than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of ‘‘space

elevators’’ near black holes. In particular, it is shown that proposals for mining black holes by lowering

boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed

nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the

moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon

with strings.

DOI: 10.1103/PhysRevLett.111.211301 PACS numbers: 04.70.Dy, 04.70.Bw

Introduction.—Classical black holes live forever. The
area theorem shows that not only can black holes not be
destroyed, their horizon area cannot decrease at all [1].
Though Penrose-style processes can extract energy stored
in electric, magnetic, or gravitokinetic fields outside the
horizon of charged or spinning black holes [2,3], no energy
can be extracted from the hole itself, and once the charge or
spin is gone we are left with a Schwarzschild black hole
that is both inert and eternal.

Quantum black holes, however, disintegrate into
Hawking radiation. But black hole evaporation is slow. A
(3þ 1)-dimensional Schwarzschild black hole of mass M
self-destructs in a time [4]

lifetime ¼ 5120�bG2

@c4
M3; (1)

which for a solar mass black hole comes to 1057 times the
age of the Universe. (The Oð1Þ constant b depends on
the number and nature of the massless species, and on
the graybody corrections to the Stefan-Boltzmann law
[5]. Henceforth we use Planck units so G ¼ @ ¼ c ¼ 1.)
Can the hole be made to relinquish its energy sooner?

Unruh and Wald have argued that it can [6]. They have
argued that by lowering a box down close to the horizon,
filling it with Hawking radiation, and raising the box back
out to infinity, that the black hole can be stripped of its
thermal atmosphere and destroyed in a time that scales
like the Schwarzschild time M [7]. I will show that this
prescription will result in the black hole horizon swelling
and consuming the box, so that rather than using a box to
rob the black hole of its radiation, the black hole instead
robs us of our box.

The strongest constraints are going to come from limi-
tations the energy conditions place on the properties of the
mining apparatus. The mining of black holes is meant to
be a quasistatic process, so we can use versions of these

conditions averaged over semiclassical distances. It seems
doubtful that there is any notion of black hole thermody-
namics that could be salvaged if we allow our equipment
to systemically violate the macroscopically averaged null
energy condition, which demands that the tension T of a
static rope cannot exceed �, its mass per unit length,
� � T. A rope that is tense must also be dense. [This
fundamental limit, T=� ¼ c2 ¼ 9� 1016 N=ðkg=mÞ in
SI units, far exceeds the breaking point of any material
that derives its strength from interatomic forces (e.g.,
defect-free carbon nanotubes can sustain no more than
T=� ¼ 10�8). ‘‘Ropes’’ that saturate the condition have
no longitudinal rest frame; examples include electric field
lines, flux tubes, and cosmic and fundamental strings.]
Subject to a greater force, the rope must stretch or the
rope must break; what the rope cannot do is resist.
Tensile strength.—A general static spherically symmet-

ric spacetime has metric

ds2 ¼ ��ðrÞ2dt2 þ dr2

fðrÞ2 þ r2d�2
2: (2)

For a Schwarzschild black hole, � ¼ f ¼ ð1� 2M=rÞ1=2.
A general static spherically symmetric matter distribution
has stress energy

T�
� ¼ diagf��; pr; p�; p�g ¼ 1

4�r2
diagf��;�T; S; Sg;

(3)

where �ðrÞ is the mass per unit radial length, TðrÞ is the
radial tension, and SðrÞ is the angular compression stress.
The condition for equilibrium of a static distribution is
r�T

�
r ¼ 0, or

dT

dr
þ 1

�

d�

dr
T þ 2

r
S ¼ 1

�

d�

dr
�: (4)
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The weight of the material (the rhs) must be supported by
increasing the radial tension (the first term), holding the
radial tension fixed while the tension below redshifts away
(the second term), or by angular compression stress (the
third term).

The null energy condition (NEC) requires that
T�
� k�k

� � 0 for every null vector k�. Choosing the radial

null vector reproduces �> T. Choosing the angular null
vector requires that �>�S. Let us investigate the impli-
cations of this condition as it pertains to ropes and boxes
near black holes.

Ropes must be heavy: A hanging rope has radial tension
(T > 0) but no angular stress (S ¼ 0). If a rope of constant
� is suspended from infinity down towards the black hole
horizon, what tension in the rope is required to keep it
static? Equation (4) tells us that the required tension is
independent of r and independent of M

Tð�; r;MÞ ¼ �: (5)

Closer to the horizon the gravitational field g � d log�=ds
is stronger, but there is less rope to support below. (This
solution acts as an explicit constructive counterexample to
the claim of Ref. [8] that there can be no such solution.
Compare my Eq. (4) to the paper’s erroneous Eq. (5),
which disregards the changing radial component of ta;
see also Ref. [9].) The ability of a constant tension rope
to support itself is a uniquely relativistic effect; in
Newtonian mechanics the tension must always increase
with height to compensate for the increased weight, but
in curved spacetime the weight of the rope redshifts away.

Thus for a constant-� rope to support itself, it must
saturate the NEC bound. And even a constant-� rope
that saturates the NEC bound must expend all its tensile
strength supporting its own weight, if it stretches all the
way down to the horizon, leaving none over to support a
box. By getting rid of the rope below a certain height, we
can free up tensile strength, but only enough to support a
box no heavier than the weight of the excised rope. For a
thin box of proper mass m � M at a radius r ¼ R in
Schwarzschild spacetime, integrating Eq. (4) gives the
required tension and therefore the required density in the
rope as mgjr¼R, or

� � T ¼ 1

�

Mm

r2

�
�
�
�
�
�
�
�r¼R

: (6)

It is sometimes said that the force required at infinity
to hold a box fixed near a black hole remains bounded
even for masses arbitrarily close to the horizon: though the
gravitational field gets ever stronger, the redshifted gravi-
tational force remains finite. This is technically true, but
misleading. The NEC demands that the rope be heavy,
which means that by the time you are far from the hole
very little of the tension is devoted to supporting the weight
of the box, and almost all is devoted to supporting the
weight of the rope. The force at infinity required to suspend

both box and supporting NEC-obedient rope does diverge
as the horizon is approached.
Boxes must be narrow: A second consequence of the

NEC is that a single box hanging from a single rope near a
black-hole horizon can be no wider than the local Hawking
wavelength. To see this, let us first see what constraints the
NEC places on ropes suspended not from one point, as in
the previous discussion, but from two.
In Newtonian mechanics, the profile adopted by a

constant density rope suspended from two points in a
constant gravitational field is the catenary y ¼ yb � aþ
a coshðx� xbÞ=a, where a, xb, and yb are determined by
the boundary conditions. The tension at the bottom is�ga.
This Newtonian intuition suggests that the NEC will
bound the radius of curvature at the bottom a to be less
than about g�1.
Let us consider the region just outside a fixed

Schwarzschild horizon. Using f ¼ � ¼ ð1� 2M=rÞ1=2
and moving to the near horizon limit (� � 1) of Eq. (2)
gives Rindler coordinates

ds2¼��2dt2þ16M2d�2þ4M2ðd�2þcos2�d�2Þ: (7)

The horizon lies at � ¼ 0, where the local gravitational
field g ¼ 1=ð4�MÞ diverges. The action of a static
constant-� constant-� NEC-saturating string hanging
with shape �ð�Þ is proportional to

S��
Z

dtd� cos��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�0ð�Þ2
q

: (8)

If we consider strings that are not only close to the horizon
but also take up a small angular scale we can treat the cos�
as essentially fixed so that we are treating the horizon as a
plane. Then the action provides the same function to be
extremized as the potential energy in the Newtonian case,
and the solution is

�ð�Þ ¼ 1

2
�0 cosh

�

�0

: (9)

Remarkably, the shape of a constant-�, constant-T string
in the nonconstant gravitational field of a black hole has the
same functional form as the shape of a constant-�, non-
constant-T rope in a constant Newtonian potential [10–13].
The difference is that in this case we have specified the
tension so if we fix the point of closest approach to the
horizon, we also fix the radius of curvature there. Since we
can make T less than�, we can make the rope hang steeper
than Eq. (9). Since we cannot make T greater than �, we
cannot make the rope hang shallower than Eq. (9).
The implication of this is that two points at the same �

can be connected by a NEC-satisfying string only if
they are sufficiently close. If they are separated by a
distance 2M��, then a string can be hung between them
only if there is some solution to the above equation.
Minimizing �ð�Þ with respect to �0 gives the bound
�� < ð1:3254 . . .Þ�.

PRL 111, 211301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 NOVEMBER 2013

211301-2



We can repeat this analysis for the rotationally symmet-
ric box formed by hanging a NEC-saturating sheet from a
circular support. In the near-horizon, small-angular-size,
fixed-Schwarzschild limit the action is proportional to

S�
Z

d���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�0ð�Þ2
q

; (10)

so that the shape must satisfy

2�00

1þ 4�02 ¼
1

2�
� 2�0

�
: (11)

The dilation symmetry ensures that if �ð�Þ is a solution,
so is ��ð�=�Þ, just as for the case of the NEC-saturating
string. The shape equation can be numerically integrated to
reveal that a sheet can be hung from a circle without
breaking only if �� < ð2:1754 . . .Þ�.

At a height 4M� above the horizon the wavelength of a
Hawking photon is approximately M��� 4M�, so the
NEC permits us to build boxes only just wide enough to
fit a single wavelength of Hawking radiation, no matter
whether we use ropes or sheets. If we employ many sup-
porting strings, then we can hang many boxes that collec-
tively cover a larger area, but no single box with a single
point of support can have a width that exceeds the local
Hawking wavelength. For every Hawking wavelength we
wish to enclose, we need another supporting rope.

Backreaction and melting: If the rope is too heavy, it will
itself undergo gravitational collapse. The Gt

t ¼ 8�Tt
t com-

ponent of Einstein’s equation implies that a string produces
a deficit angle of 8�� [14,15]; once the deficit angle
reaches 4� gravitational collapse is inevitable, so the string
must be lighter than half a Planck mass per Planck length

�<
1

2
: (12)

The rope cannot be too light, though. If the rope is so
slight, or the temperature so great, that the weight of even a
single Hawking photon exceeds the rope’s carrying ca-
pacity, Eq. (6), then the rope cannot prevent the photon
falling into the hole and carrying at least part of the rope
with it. Since at a redshift � a typical Hawking quantum
has an energym� ð�MÞ�1, the string can bear the photon
only when

�> ð�MÞ�2: (13)

For a fundamental string, this corresponds to the redshift at
which the Hawking radiation has reached the melting point
of the string, the Hagedorn temperature [16,17].

The twin constraints of backreaction and melting limit
the usefulness of ropes less tense than the NEC bound.
We have already seen that only a T ¼ � rope can support
itself if it is to have constant mass per unit length, so a
T <� rope must be tapered, with a higher tension and
linear density at the top than at the bottom. If we input
TðrÞ ¼ �w�ðrÞ into Eq. (4) then the solution is

�ð�Þ ¼ �1��ðð1þwÞ=wÞ: (14)

The string tapers from finite linear density�1 at infinity to
zero linear density at the horizon. On the one hand, the rope
must not be so linearly dense at infinity as to gravitation-
ally collapse, so �1 < 1=2. On the other hand, the rope
must not be so light at the black hole end that it melts and
loses control of the box. A rope that is as dense at infinity
as is consistent with backreaction melts at a redshift

��Mð2w=ð1�wÞÞ. But most thought experiments take place
down at a redshift that scales as ��M�1 so that the
temperature stays fixed even as the black hole is taken
very large and semiclassical. It is only at these redshifts
that the Generalized Second Law may be in jeopardy
[2,18–25], only at these redshifts that buoyancy produced
by the Hawking atmosphere becomes significant [6,26,27],
and only at these redshifts that we could hope to mine
enough energy that the lifetime scales as the light-crossing
timeM [7]. So only a NEC-saturating (w ¼ �1) string will
do. Not twine, not steel, not nanotubes—to reach interest-
ing redshifts requires our rope to have the maximum
possible tensile strength permitted by the laws of nature.
The destruction of black holes.—Unaided Hawking ra-

diation releases approximately one quantum per light-
crossing time M. If in the same time N such quanta could
be liberated, the lifetime would fall to

lifetime�M3

N
: (15)

Near the horizon of a black hole the metric is given by
Eq. (7); the area remains fixed atM2 but every other length
scale is given by �M: the distance to the horizon, the
wavelength of Hawking quanta, and the time spacing
with which they arrive. Every locally measured time �M
a photon of wavelength �M passes through each cell of
area ð�MÞ2. Due to the gravitational time dilation near the
horizon, a locally measured time of �M corresponds to an
asymptotically measured time of M. Thus through a given
angular area element near the horizon, the number of
photons passing per asymptotically measured light-
crossing time is

N ¼ area

�2M2
: (16)

Taking the area to be a whole sphere surrounding the hole,
this number of photons is N � 1=�2. What this means is
that almost all photons that make it past a sphere of redshift
� � 1 do not make it out to infinity. This effect can be
understood already in the geometric optics approximation
(marginally applicable here because the wavelength and
redshift-doubling length coincide). As a matter of geome-
try, null rays near the horizon must be aimed within an
angle �c � � of the vertical in order to escape the hole—
any greater deviation and they loop round and are recap-
tured by the hole. Angular momentum makes escaping the
hole more difficult.
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The mining proposal [6,7,28] is that we reach in with a
box and help these photons over the angular momentum
barrier. No matter whether it expends its own energy
climbing out of the gravitational potential, or we have to
expend energy dragging it out, the net energy we recover
from a photon is � times the proper energy it had when we
captured it, which is to say �ð1=�MÞ ¼ ð1=MÞ. It is not
that we recover more energy per photon, it is rather that we
recover more photons. (We adopt the perspective of a
quasistatic observer at a fixed value of �, for whom the
black hole is surrounded by a thermal atmosphere of
mineable Hawking radiation. Even though they see no
thermal atmosphere, mining can also be understood from
the perspective of an infalling inertial observer; see Sec. IV
of Ref. [6].) How many can be liberated per time M is
going to be determined, through Eq. (16), by how deep we
can mine. We turn to that question now.

If the mass per unit length of an individual NEC-
saturating rope is �s, and the total number of ropes we
wish to deploy is Ns, then we have the following
constraints.

Constraint 1: melting. If we are to scoop from a redshift
�, then the strings cannot have melted at that depth.
Equation (13) then implies

1

�2M2
<�s: (17)

Constraint 2: gravitational backreaction. The collective
mass of the quasistatic strings must not induce gravita-
tional collapse. Equation (12) then implies

�sNs < 1=2: (18)

Constraint 3: box width. We have seen that it is impos-
sible to construct a box that is wider than the local wave-
length of the radiation, so it is impossible for a single rope
to lift parametrically more than a single Hawking quantum
per light-crossing time

N <Ns: (19)

The principal lower bound on the lifetime comes from
combining Eqs. (18) and (19). If we have at our disposal a
NEC-saturating rope with a given fixed �s, then gravita-
tional backreaction limits the number of ropes we may
deploy, so the black hole can be destroyed in a time no
shorter than

lifetime � �sM
3: (20)

This is a factor of G�s shorter than the unaided evapora-
tion time. If we have a number of different weights of
suitable NEC-saturating rope at our disposal, this lower
bound indicates we should choose the one with the smallest
�s. But only up to a point. If the string is too light then it
melts before it can get deep enough. If we wish to collect
many photons then we must reach deep, but deep means
hot. Equation (17) implies that if we have complete

freedom to pick �s, then the optimal tradeoff between
backreaction and melting is given by picking �s �M�1.
This gives a second lower bound on the lifetime

lifetime � M2: (21)

For intermediate mass black holes, this may be more
restrictive than Eq. (20). [In nþ 1 dimensions, the

Schwarzschild radius is rS �M1=ðn�2Þ and the evaporation
lifetime is Mr2S � rnS. The analogue of Eq. (20) is that the

lifetime cannot be made shorter than �sr
3
S, while the

analogue of Eq. (21) is that the lifetime cannot be made

shorter than rð3n�1Þ=ðnþ1Þ
S . In 3þ 1 dimensions the lifetimes

of the largest black holes scale as the same power of rS
whether or not the black holes are being mined: only the
prefactor is improved. But in higher dimensions mining is
much more effective, while still slower than the rS pre-
dicted by Ref. [7]. ]
The lower bounds Eqs. (20) and (21) limit the rate at

which black holes can be mined with boxes. But boxes are
not the only ways to mine black holes [29,30]. Lawrence
and Martinec [31] showed that, even without a box, a string
dangled into a black hole wicks away Hawking radiation.
The equation for perturbations on the string is just that of
the s-wave bulk Hawking mode, and since the s-wave bulk
mode carries away the majority of the energy in conven-
tional Hawking radiation [5], so a single string carries
away parametrically as much energy as the whole bulk
Hawking emission [32–34]. (The string carries this energy
exclusively in transverse modes, since it has neither longi-
tudinal nor conduction modes [31].) Photons with high
angular momentum cling to the string, deposit their angular
momentum, and are channeled up to infinity. Frolov and
Fursaev [29] argued that by employing many strings black
holes can be systematically mined.
Black hole mining with strings is slow: each string

can carry away just one quantum per light-crossing time.
But the foregoing analysis shows that the narrow boxes
demanded by the NEC can do no better. The constraints
on the number of strings that can support boxes carry
directly over to constraints on the number of strings that
can be dangled into the horizon, so the rates of these two
types of mining are parametrically identical. [Frolov and
Fursaev [29] considered multiple strings sticking into black
holes and achieved the same limits on mining as is captured
in Eqs. (20) and (21). They derived the limit Eq. (21) by
considerations of string reconnection: the strings are safe
from reconnecting with one another and being expelled
from the hole if kept more than one string length apart.
However, it seems like there are otherways the strings could
be safe from reconnection: for example, they could be
oriented strings. Happily, we have seen other ways to derive
the same limit. I thank Don Marolf for discussions on this
point, similar discussions will appear in Ref. [35]].
When it comes to black hole mining, then, boxes

are superfluous. Worse than superfluous, they are an
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encumbrance: the many extraneous moving parts present
more failure modes and burden the mining process with
unnecessary Oð1Þ overheads. Rather than scoop the
Hawking radiation up with boxes, both the simplest and
the fastest way to destroy black holes is to puncture the
horizon with a large number of NEC-saturating strings,
allowing Hawking modes even of high angular momentum
to flow up and away along a soaring multitude of celestial
brane drains.

There is a great trove of energy stored in the thermal
atmosphere of a black hole, by some measures all the
energy the hole possesses. But we see this energy only
faintly, in the rare Hawking quanta that make it out, and we
grasp for it at our peril. To reach close to the horizon
demands that our equipment be strong, the threat of gravi-
tational backreaction demands that our equipment be light,
but the null energy condition demands that that which is
strong must also be heavy.

A warm thank you to Nima Arkani-Hamed, Raphael
Bousso, Alex Dahlen, Steven Gubser, Igor Klebanov,
Juan Maldacena, Don Marolf, Don Page, Ruth Pearson,
Douglas Stanford, Bill Unruh, Herman Verlinde, and
Robert Wald.
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