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Measurement-based quantum computation represents a powerful and flexible framework for quantum

information processing, based on the notion of entangled quantum states as computational resources. The

most prominent application is the one-way quantum computer, with the cluster state as its universal

resource. Here we demonstrate the principles of measurement-based quantum computation using

deterministically generated cluster states, in a system of trapped calcium ions. First we implement a

universal set of operations for quantum computing. Second we demonstrate a family of measurement-

based quantum error correction codes and show their improved performance as the code length is

increased. The methods presented can be directly scaled up to generate graph states of several tens of

qubits.
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The circuit model of quantum computation is concep-
tually similar to a classical computer: a register of two-level
systems in a simple initial product state is manipulated
using unitary quantum logic gates [1]. Measurement-based
quantum computation (MBQC) [2] represents a conceptu-
ally and practically different approach: after preparing an
entangled state of qubits [3], computation proceeds by
performing measurements and feedforward. Any quantum
information processing task in the circuit model can be
directly mapped to MBQC. However, owing to the two-
stage process of MBQC—resource creation followed by its
processing—resource states can be manipulated before-
hand. This offers a large degree of flexibility in optimizing
and compressingmeasurement-based schemes for quantum
information processing. As a result measurement-based
entanglement purification [4] and quantum error correction
[5,6] schemes have been found with very high noise thresh-
olds, making MBQC a very promising route to fault toler-
ant quantum computation [7].

Several aspects of MBQC have been demonstrated ex-
perimentally using photonic qubits [8–11]. Directly scaling
up the nondeterministic methods used to generate
entangled states in these works is very challenging, since
their success probability reduces exponentially in photon
number. Very recently there has been work on generating
cluster states in continuous variables of light fields [12].

In this Letter we present a comprehensive first demon-
stration of MBQC using trapped ions. Furthermore we
make the following system-independent steps forward:
our cluster state generation methods are deterministic
and can be directly scaled up to tens of qubits
with existing technology; we demonstrate the principles
of measurement-based quantum error correction

(MBQEC)—an essential requirement for a large-scale de-
vice. The Letter is organized as follows: First MBQC is
briefly reviewed and our approach to preparing cluster
states is summarized. Then a universal set of operations is
presented using a four-qubit cluster state. Next a MBQEC
code is introduced, which can protect an encoded one-qubit
state against bit-flip errors. Finally the code is implemented
for increasing code word lengths and tested against various
noise scenarios. We do not implement active feedforward,
which has previously been demonstrated with trapped ions
[13,14]. Our results are postprocessed to reproduce the
action of perfect feedforward.
A mathematical graph G ¼ ðV; EÞ is a set of vertices V

and edges E. The corresponding graph state is a physical
state of n ¼ jVj qubits, associated with the vertices of the
graph G, which is defined in the following way. For every
vertex one defines an operator Ka ¼ Xa

Q
b2N ðaÞZb where

N ðaÞ denotes the neighborhood of vertex a and X and Z
denote Pauli spin- 12 operators. The graph state jGi is

uniquely defined as the common eigenstate of all operators
Ka with eigenvalueþ1. One approach to generating graph
states is to start from an initial state with all qubits in jþi,
i.e., the þ1 eigenstate of X, and then apply a controlled
phase, CP, gate [1] between every pair of qubits connected
by an edge.
An important graph state is the 2D cluster state jCi [3],

which has the topology of a square lattice and belongs
to the class of universal resource states [15,16]. Any quan-
tum computation can be carried out on a sufficiently large
jCi. In particular, any quantum logic circuit can be trans-
lated to a single-qubit-measurement pattern on jCi [3].
Measurements in the computational basis can be used to
remove qubits from the cluster and imprint any desired
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quantum circuit structure onto the lattice. Measurements in

the basis Bð�Þ ¼ ðj þ �i; j � �iÞ, where j � �i ¼ ðj0i �
ei�j1iÞ= ffiffiffi

2
p

with real �, drive the computation. The value
of � determines, for example, the angle of single-qubit
rotations. In general � has to be adapted to the outcomes of
previous measurements and thus introduces a temporal
order and the need for feedforward [2].

Our experiments use strings of 40Caþ ions in a linear
Paul trap [17,18]. Two electronic states encode a qubit
(jD5=2; m ¼ þ3=2i ¼ j0i, jS1=2; m ¼ þ1=2i ¼ j1i) and

they are coupled by an electric quadrupole transition at
729 nm. We now briefly summarize how graph states are
generated (for more details see the Supplemental Material
[19]). Experiments begin by preparing n ionic qubits in the
state j1i�n via optical pumping, and preparing the axial
center-of-mass (c.m.) and stretch (STR) vibrational modes
in the ground state by resolved sideband cooling. Graph
states are generated using three distinct tools. First an
effective long-range qubit-qubit interaction of the form
HMS ¼ J

P
a<bXaXb can be turned on for arbitrary times.

This interaction is realized by off-resonantly driving the
axial c.m. vibrational mode of the ion string using a
bichromatic laser field from a single direction [18,20].
When applied to ionic qubits in j1i�n this periodically
generates fully connected graph states that are equivalent
to GHZ states [21,22]. The second and third tools enable
the selective removal of any connection in the graph
[13,23]. Both use laser pulses tightly focused on individual
ions. In combination these three tools allow, in principle,
any cluster state to be deterministically created.

In the circuit model of quantum computation a universal
set of logic gates provides the tools to implement arbitrary
quantum algorithms [1]. A common universal gate set
consists of the CP gate and arbitrary single-qubit rotations

around two independent axes, e.g., the Z axis RZð�Þ ¼
e�ið�=2ÞZ and the X axis RXð�Þ ¼ e�ið�=2ÞX, by angle � [1].
All of these gates can be translated to carrying out specific
sequences of measurements and feedforward on a four-
qubit linear cluster state jLC4i, which are presented in
Figs. 1(a) and 2(a) [8]. Realizing measurement patterns
like these on large-scale cluster states, when combined
with quantum error correction (QEC), enables arbitrary
MBQC [2]. We create jLC4i using a laser pulse sequence
lasting 300 �s and reconstruct the full density matrix via
quantum state tomography (see the Supplemental Material
[19] for details). The observed fidelity with the ideal state
is 0:841� 0:006, which is well above the threshold for
witnessing multipartite entanglement of 0.5 [24].

Measurement of jLC4i in the order presented in Fig. 1 is
equivalent to a circuit performing a sequence of one-qubit
gates on the encoded state jþi. The choice of measurement
basis of qubits 1, 2. and 3 [B1ð�Þ, B2ð�Þ, and B3ð�Þ]
determines the overall rotation applied to jþi. We imple-
ment a range of measurement combinations, each demon-
strating a different one-qubit rotation. One approach,

which avoids the need for active feedforward, is to recon-
struct the output state (encoded in qubit 4) postselected on
the cases where the þ1 outcomes of the measurement of
qubits 1, 2, and 3 are observed, as in Ref. [8]. More
information is obtained if all outcomes are kept and post-
processed to simulate perfect feedforward. Results
obtained in this way provide an upper limit for the per-
formance that could have been achieved using feedfor-
ward. Figure 1 presents the results on the Bloch sphere: a
range of rotated one-qubit output states, reconstructed via
quantum state tomography. The average output state fidel-
ity with the ideal case is 0:92� 0:01.
Measurement of jLC4i in the order presented in Fig. 2 is

equivalent to a circuit composed of a CP gate and one-qubit
rotations, which operates on the encoded state two-qubit
state jþþi. We choose two important cases: a maximally
entangled state (case 1) and a product state (case 2) are
ideally created. The generated entanglement is quantified
by the tangle � [25]. In case 1 we find that the experimen-
tally reconstructed state is strongly entangled, � ¼ 0:59�
0:05, and has a fidelity of 0:88� 0:02 with the ideal state.
In case 2 the experimental state is close to being separable,
� ¼ 0:02� 0:01, and has a fidelity of 0:83� 0:01 with the
ideal state. Experimentally reconstructed two-qubit output
density matrices are presented in Fig. 2. Taken together, the
results in Figs. 1 and 2 demonstrate a universal set of
operations for MBQC.
In a realistic setup one cannot decouple the qubits on

which the computation is performed completely from the
environment, which will introduce errors on the qubits.
QEC codes [1,26,27] provide a solution by encoding the
states j0i and j1i of a qubit into the states of larger physical

FIG. 1 (color online). Demonstration of one-qubit gates via
measurement-based quantum computing. (a) Cluster state jLC4i.
Qubits 1, 2, and 3 are measured consecutively in the basis B1ð�Þ,
B2ð��Þ, and B3ð��Þ. (b) Equivalent quantum circuit. Rotation
angles �, �, and �. Hadamard (H) [1]. (c) Ideal output states on
the Bloch sphere for ½�;�; �� ¼ ½�=2; 0; 0� (red, j�yi), [0, 0,
��=2] (green, jþyi), [�=2, ��=2, 0] (blue, j�xi), [�=2, 0,
��=2] (cyan, j0i), [�=4, 0, 0] [magenta]. (d) Experimentally
measured states; the average fidelity with the ideal cases is
0:92� 0:01. Gray extrapolations show nearest pure state.
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systems j0Li and j1Li (called code words or logical qubits)
and using correlations to protect the information. QEC
consists of at least two steps after the encoding. First one
measures the correlation operators which reveal the error
syndrome. In this step errors, which might be unitary qubit
rotations or involve entangling to the environment, are
discretized. The discretization of the errors is a crucial
step, as it reduces the infinite set of possible quantum errors
to a finite set. Second, one applies the recovery operator to
undo the error. The principles of QEC in the circuit model
have been demonstrated before [28–32], including the
three-qubit phase-flip code [33]. Circuit model QEC codes
can be translated to MBQC in the same way as algorithms.
However it is important to note that QEC codes involve
only Clifford gates and Pauli measurements and these can
be implemented in a very compact way in MBQC [6].

We demonstrate a MBQC phase-flip code, with code
words j0Li ¼ jþi�n and j1Li ¼ j�i�n, capable of correct-
ing full phase flips (Z) on up to ðn� 1Þ=2 of the code word
qubits. The general form of the graph state employed,
labeled jECni, and the protocol are presented in Fig. 3.
jECni consists of nþ 2 qubits: n for the codeword, labeled
C1 to Cn, and two additional qubits A and B to read in
(encode) and read out the initial and final protected one-
qubit state, respectively. After preparation of jECni, the
protocol proceeds as follows: (1) A one-qubit state jc i, or
the orthogonal state, is encoded by measuring qubit A in a
basis where these are the eigenstates. The effect is to
distribute either state nonlocally amongst the remaining
(nþ 1) qubits. (2) Each of the n central qubits Cn is
measured in the X basis, yielding one of 2n possible out-
comes. This simultaneously decodes the state and reveals
which of up to ðn� 1Þ=2 errors have occurred on the

central qubits (i.e., determines the error syndrome). (3) A
one-qubit correction operation, determined by the outcome
in (2) is applied to the output state, stored in qubit B,
recovering the encoded one-qubit state.
The temporal order of the measurements is unimportant

and errors can happen to the central qubits C1 to Cn at any
time before they are measured. It is useful to interpret the
protocol as attempting to teleport a state across the graph,
from A to B, through a noisy channel affecting the middle
qubits.
We demonstrate the protocol using the n ¼ 1, 3, and

5 cases shown in Figs. 4(a)–4(c). Equivalent experimental
investigations of increasing codeword lengths in the circuit
model have not yet been realized, due to the complexity of
the gate sequences required. The laser-pulse sequences
used to generate each graph are described in the
Supplemental Material [19]. For the n ¼ 1 and 3 cases
we reconstruct the full (nþ 2)-qubit density matrices via

FIG. 2 (color online). Demonstration of two-qubit gates via
measurement-based quantum computing. (a) Qubits 1 and 4 of
cluster state jLC4i are measured in the basis B1ð�Þ and B4ð�Þ,
respectively. Qubits 2 and 3 encode the output state. (b).
Equivalent quantum circuit, with angles determined by � and
�. Final element is a CP gate. (c)–(d). Experimental output state
density matrices (left and right; real and imaginary parts, re-
spectively) in two cases: (c) an entangled state for � ¼ �=2,
� ¼ ��=2, with fidelity 0:88� 0:02, and tangle 0:59� 0:05,
and (d) an ideally separable state for � ¼ 0, � ¼ 0, with fidelity
0:83� 0:01 and tangle 0:02� 0:01.

FIG. 3 (color online). Graph state jECni and its use in
measurement-based quantum error correction. (a) (nþ 2)-qubit
graph state jECni and protocol, which can correct for phase-flip
errors (Z) occurring on up to ðn� 1Þ=2 of qubits C1 to Cn.
Ideally an encoded one-qubit state is perfectly teleported across
the cluster, from A to B. (b) Conceptually equivalent quantum
logic circuit.

FIG. 4 (color online). Quantum error correction performance
against errors on subsets of codeword qubits. (a) to (c). Graph
states jECni for n ¼ 1, 3 and 5, respectively. Errors are applied
to qubits in blue. (d) Solid blue line: ideal case in (a).
Experimental results for cases (a)–(c) are shown as blue dia-
monds, red squares and grey inverted triangles (two errors),
respectively. Black circles show case (c) for only a single error
applied to C1. For more details see supplementary material.
Errors are one standard deviation and derived from quantum
projection noise.
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quantum state tomography, yielding state fidelities of
0:92� 0:005 and 0:843� 0:005, respectively.

The codes are tested against errors realized by applying
one-qubit rotations Rz ¼ expð�ið�=2ÞZÞ to all or a subset
of the code word qubits Cn. After measurement of Cn (and
therefore discretization of the errors) this is equivalent to
independent phase flips occurring incoherently and inde-
pendently on those qubits to which rotations are applied,
with probability p ¼ sin2ð�=2Þ. For input states we choose
to encode the four eigenstates of the Pauli X and Y opera-
tors, which are maximally affected by phase-flip errors.
Error correction performance is quantified by the telepor-
tation state fidelity, through the noisy channel, averaged
over the four input states.

First each code is tested against errors applied to one
code word qubit (C1). The n ¼ 3 and 5 graphs should be
robust to this, whilst the average teleportation fidelity for
the n ¼ 1 graph should reduce linearly with p, since it
provides no error correction. The results, presented in
Fig. 4, show quantitative agreement with the ideal cases,
up to deviations that largely correspond to an overall
fidelity drop due to imperfections in the graph state prepa-
ration. Also shown is the resistance against two errors (C1

and C2) for the n ¼ 5 case, afforded by the increased code
word length. We emphasize the quality of the results: even
in the presence of a large amount of noise we are able to
teleport states across a 7 ionic-qubit string with fidelities of
over 0.8.

These diagnostic tests show that the experimentally
generated graph states respond correctly to errors applied
to individual code word qubits. A more realistic situation is
that all code word qubits are subject to error with the same
probability. Figure 5(d) shows the theoretical performance
of the ideal graphs against such noise: for p < 0:5, graphs
with larger n perform better, tending towards perfect cor-
rection up to p ¼ 0:5 as n ! 1.

Errors are applied to all physical code word qubits in the
experimentally generated graph states and the results are
presented in Fig. 5(e). Qualitative agreement with the ideal
case is observed. Even though many more qubits are
exposed to errors in the larger code words, there is still a
region where they perform better. That is, we are able to
demonstrate that, for a range of noise levels, a better
protection of quantum information is provided when using
a larger error correction code. For more discussion see the
Supplementary Material [19].

We have made several distinct steps forward in MBQC:
the deterministic generation of graph states, together with
their application as resources; the demonstration of
measurement-based quantum error correction; and the
observation of improved performance with increasing
code word length. Both the circuit and measurement-based
models of quantum computation have now been demon-
strated in trapped ions. There is as yet no obvious reason to
favor one over the other at this stage. In the short term,

scaling up MBQC will require more emphasis on fast state
detection and feedforward. MBQEC of arbitrary errors is
possible using more complicated graph states.
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[13] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm,
G. P. T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-
Kaler, D. F. V. James et al., Nature (London) 429, 734
(2004).

[14] M. Riebe, T. Monz, K. Kim, A. S. Villar, P. Schindler, M.
Chwalla, M. Hennrich, and R. Blatt, Nat. Phys. 4, 839
(2008).

[15] M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel,
Phys. Rev. Lett. 97, 150504 (2006).

[16] M.V. den Nest, W. Dür, A. Miyake, and H. J. Briegel, New
J. Phys. 9, 204 (2007).

[17] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez,
S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F.
Roos, M. Chwalla et al., arXiv:1308.3096.

[18] G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma,
C. F. Roos, and R. Blatt, New J. Phys. 11, 023002
(2009).

[19] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.210501 for
experimental details including: laser pulse sequences,
experimental techniques, and data analysis techniques.
Additional results and analysis including: experimentally
reconstructed graph state density matrices.

[20] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971
(1999).

[21] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and
R. Blatt, Phys. Rev. Lett. 106, 130506 (2011).

[22] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).
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