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The nonequilibrium response of a quantum many-body system defines its fundamental transport

properties and how initially localized quantum information spreads. However, for long-range-interacting

quantum systems little is known. We address this issue by analyzing a local quantum quench in the long-

range Ising model in a transverse field, where interactions decay as a variable power law with distance

/ r��, �> 0. Using complementary numerical and analytical techniques, we identify three dynamical

regimes: short-range-like with an emerging light cone for �> 2, weakly long range for 1<�< 2 without a

clear light cone but with a finite propagation speed of almost all excitations, and fully nonlocal for �< 1

with instantaneous transmission of correlations. This last regime breaks generalized Lieb-Robinson bounds

and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of

propagating quasiparticles remains valid, allowing an intuitive interpretation of our findings via divergences

of quasiparticle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
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Physics is about identifying which in nature are the
causes and which are their effects. In abstract mathematical
theories, however, this distinction is not always given.
While special relativity was designed with the purpose of
enforcing the causality principle, in nonrelativistic quan-
tum mechanics none of the five postulates ensures cau-
sality. In that case, causality emerges as a consequence
of the locality of interactions. By now we have been able
to see causality at work in well-controlled quantum-
mechanical experiments described by local Hamiltonians,
such as ultracold atoms [1–3]. There, the spread of corre-
lations is bounded by a light cone, similar to the spread of
information in relativistic theories. However, experiments
are currently set up where quantum dynamics under vari-
able long-range interactions can be studied, e.g., in polar
molecules [4–6], Rydberg atoms [7,8], or trapped ions
[9–14]. This development makes it a pressing issue to
answer the fundamental question: can the out-of-equilibrium
dynamics of synthetic long-range Hamiltonians effectively
break causality?

We address this issue by studying a model that is cur-
rently realized in trapped-ion experiments, the transverse
Ising model with long-range interactions. As we will show,
the out-of-equilibrium response to an initially localized
perturbation explores, depending on the interaction range,
three different degrees of locality breaking. Specifically,
we characterize the out-of-equilibrium response [15] of the
model to local quenches, obtained by perturbing locally the
ground state of the system and observing its subsequent
evolution.

When the Hamiltonian that drives the evolution con-
sists of local terms, the initially localized perturbation
spreads at a finite speed, leading to the formation of a

characteristic light cone that bounds the propagation [1].
The reason for this behavior is the Lieb-Robinson bound
[16], which in its essence formulates the principle of
causality. Mathematically, under certain assumptions,
the Lieb-Robinson bound expresses a bound for the
time-dependent commutator between two operators OA,
OBðtÞ, defined at t ¼ 0 on two disjoint regions of the
system A and B separated by a distance L [17,18],

½OA;O0ðtÞB� � kOAkkO0
BkgðLÞ

vt

L
; (1)

where on the right-hand side the norm is the operator norm,
v is the Lieb-Robinson velocity, and gðLÞ is an exponenti-
ally decaying function. This bound has proven essential for
understanding the complexity of quantum states [17,18],
allowing us to formulate several general theorems, e.g., con-
necting excitation gaps and decay of correlations [19,20].
In some systems, the Lieb-Robinson bound can be under-

stood using an intuitive pseudoparticle picture [21–23]. This
applies if the low-lying excitations can be obtained by
populating (for translational invariant systems) different
pseudoparticle momentum states, with the vacuum charac-
terized by the absence of pseudoparticles. Then, the system
responds to a local perturbation by emitting pseudoparticles
propagating at different speeds. The fastest particles, which
define the causal cone, propagate at a speed that is often
identified as the Lieb-Robinson velocity for that specific
model.
Much less is known about how correlations spread in

the presence of long-range interactions, although these
become important in many different contexts. Namely, in
local models where some of the constituents propagate
much faster than the others, one can capture the effect of
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the fast constituents in an effective description of the slow
ones involving a nonlocal interaction. A prime example is
quantum electrodynamics, describing the contact interac-
tion of charges with photons propagating at the speed of
light. In the nonrelativistic limit, where the charges move
much slower than the light, the presence of photons can be
encoded in a long-range Coulomb potential between the
charges. Theories with long-range interactions can have
overextensive energies [24,25] and are thus strongly non-
local. In such circumstances, one would expect that
concepts like causality and the locality of quasiparticle
excitations should be reconsidered.

The purpose of this Letter is to address this issue using
complementary analytical and numerical calculations. We
find three qualitatively different dynamical regimes, with a
breakdown of Lieb-Robinson bounds for strong long-range
interactions, and a weaker form of locality breaking that
obeys the Lieb-Robinson bounds for intermediate interac-
tion ranges. We are able to explain these regimes via the
above-mentioned pseudoparticle picture. Finally, we dis-
cuss experimental regimes in trapped-ion setups where our
findings can be observed.

For this purpose, we study the out-of-equilibrium
dynamics generated by long-range interactions in the
simplest possible scenario that can be implemented in
trapped-ions experiments [26], namely the long-range
transverse Ising chain (LRTI),

H ¼ sinð�ÞX
hi;ji

�x
i �

x
j

ji� jj� þ cosð�ÞX
i

�z
i : (2)

Here, � denote the usual spin-1=2 Pauli matrices, and we
set fundamental energy unit and lattice spacing to unity.
We consider a finite chain of L sites with open boundary
conditions. The parameter � is varied within the broad
limits 3 * � * 0 that can be realized in the ion setups,
allowing us to tune from effectively short-range to strong
long-range physics. The parameter � is varied in the range
of antiferromagnetic interactions 0 � � � ð�=2Þ. For any
�> 0, the system has two gapped phases, a z-polarized
phase for small �, and a Néel-ordered phase for values
of � ’ �=2. The two phases are separated by a line of
second-order phase transitions, whose universality class
depends on � [27].

Although the LRTI model does not obey the bound (1),
which only holds for exponentially decaying Hamiltonians,
one can still find a generalized Lieb-Robinson bound
[17,28,29] if the power-law interactions are reproducing.
This condition, equivalent to a sufficiently fast decay, is
fulfilled for �> 1 (see the Supplemental Material [30]),
and bounds decay of correlations by a power law gove-
rned by �.

Numerical results.—To study the effects of � on the
out-of-equilibrium dynamics after a local quench, we use
as initial state the ground state jc GSi of Hamiltonian (2) at
specific values of � and �, and at time t ¼ 0 perturb it

locally; typically jc 0i ¼ �x
L=2jc GSi. To observe the

response of jc GSi to this local perturbation, we evolve
jc 0i in time with the same Hamiltonian (2).
In our analysis, we employ two complementary

approaches, the quasiexact time-dependent variational prin-
ciple (TDVP) on matrix-product states (MPS) [31] and a
linear spin-wave theory (LSWT) (see the Supplemental
Material [30]). The used TDVP algorithm generalizes the
ones available in the literature [27,32–37]. Here, we con-
sider chain sizes up to L ¼ 150, and we have checked that
the accuracy of MPS with matrix sizes � � 200 is suffi-
cient. The LSWT involves a higher degree of approxima-
tion, and is only valid for states with sufficient magnetic
order. It has the advantage that it can access, with lower
computational cost, larger times and system sizes than what
is possible with the TDVP (we calculate numerically up to
L ¼ 1024 and analytically for the thermodynamic limit).
In those regimes where the LSWT can be applied, we have
checked that the two methods provide compatible results,
showing that the time evolution they describe is essentially
semiclassical. This agreement is plausible, since jc 0i con-
tains a single excitation with a density that decreases during
the evolution, thus justifying the assumption of noninteract-
ing quasiparticles that underlies the LSWT.
We exemplify the TDVP results for � ¼ �=5 [see

Figs. 1(a)–1(c)], which is not accessible with the LSWT
because a nearby quantum phase transition strongly
reduces magnetic order. We study the spread of quantum
correlations via the block entanglement entropy (EE)
Sl ¼ �P

n�
n
l log�

n
l , where �n

l is the nth eigenvalue of

the reduced density matrix �l involving the spins 1; . . . ; l.
As known from Ref. [27], in the ground state of the

FIG. 1 (color online). (Non)light cones. (a)–(c) Block entan-
glement entropy �Sl¼SlðtÞ�Slð0Þ from the TDVP (� ¼ �=5,
L ¼ 100). (d)–(f) Polarization �mi ¼ hSzi i þ 1=2 from the

LSWT (� ¼ �=20). (a),(d) For �> 2, the excitation at i ¼ 50
spreads light-cone-like, as in the short-range model. (b),(e) For
2>�> 1, there is no well-defined wave front, but the excitation
needs a finite time to bridge large distances. (c),(f) For �< 1,
the excitation spreads immediately over the entire system. Black
dashed lines in (d),(e) denote the maximal spin-wave group
velocity [in (f), it practically coincides with the abscissa].
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z-polarized phase of the LRTI, the long-range interactions
cause SL=2 / logL when �< 2. Therefore, to isolate the

growth of the entropy generated during the time evolution,
we analyze the excess of EE with respect to the initial state
�Sl ¼ SlðtÞ � Slð0Þ.

For the LSWT, we exemplify the resulting dynamics for
� ¼ �=20 [see Figs. 1(d)–1(f)], where the ground state is
strongly polarized hSzi i � �1=2 [27]. In this case, a useful

measure for the spread of the perturbation is the excess
magnetization �mi¼hSzi iþ1=2. Notably, within the

LSWT, this directly gives the single-site entanglement en-

tropy Sð1Þ
i ¼ð�miþ1Þlogð�miþ1Þ��mi log�mi [38,39].

Figure 1 evidences the similar behavior for the two methods
and the two � regimes.

For generic �, we identify three dynamical regimes
as a function of �. (i) For � � 2 [realized in nature, e.g.,
for van der Waals (� ¼ 6) or dipole-dipole (� ¼ 3) inter-
actions], the system behaves as if short-range interacting,
with an excitation maximum that defines a clear wave
front. Its linear propagation gives a constant Lieb-
Robinson velocity, coinciding with the maximal spin-
wave group velocity. Outside the resulting light cone,
correlations decay algebraically with a power determined
by �, thus obeying the generalized Lieb-Robinson bounds.
(ii) In the range 2>�> 1, although at short times there
appears an effect resembling a light cone, it does not really
bound the propagation of the perturbation, since correla-
tions consistently leak out of it, and at larger times one
cannot identify a wave front. Further, we find complex
interference effects due to longer-range spin flips. Still
the excitation needs a finite time to bridge larger distances.
(iii) For �< 1 (� ¼ 1 corresponds to Coulomb- or grav-
itationlike potentials), the generalized Lieb-Robinson
bounds valid for �> 1 can no longer be defined. As a
consequence, the system becomes truly long ranged, and
correlations spread practically instantaneously over the
chain.

These results complement the one of Ref. [40] about
thermalization in disordered systems, where random inter-
actions are modulated by a long-range power law. There,
the time average of local observables tends to a value
predicted by a generalized Gibbs ensemble only if �< 1.

Our findings differ from previous results for the specific
cases of Hamiltonians consisting of mutually commuting
terms, such as Eq. (2) with � ¼ �=2. In such settings, the
block entropy of subsystems can increase unchecked with
block size for � � 0:5, whereas for �> 1 it is strictly
upper bounded [41]. Further, the value � ¼ 0:5 separates
two dynamical regimes [42], one of which is characterized
by prethermalization plateaus [43].

Pseudoparticle dispersion relation.—The qualitatively
different behavior in the regimes (i)–(iii) can be understood
in a simple quasiparticle picture: during the local quench,
all spin-wave k modes become populated with occupation
� 1=L. If the pseudoparticles do not interact (a good

approximation for low pseudoparticle density), each
mode subsequently propagates with its group velocity
vg ¼ ð@!k=@kÞ, which depends only on the dispersion

relation !k [cf. Fig. 2(a); see the Supplemental Material
[30] for an analytical formula from the LSWT].
In the range 2<�<1, the maximal group velocity

vmax is achieved around k ¼ �=2, and does barely depend
on system size or � [see Fig. 2(b), top]. At �< 2, however,
!k acquires a cusp at k ¼ �. Consequently, vmax is
attained at k ¼ �� 2�=L [44]. It diverges as vmax /
ð2�=LÞ��2. Still, the time scale in which pseudoparticles
can reach the boundary tb � L=ð2vmaxÞ scales as L��1,
which diverges for 1<� � 2; the time to reach the bound-
ary increases with system size, even for the fastest mode.
The long-range effects become more dramatic at �< 1

due to a stronger divergence vmax / ð2�=LÞð��3Þ=2. Now,
for the fastest mode, tb decreases with system size (actually
for a diverging number of modes; see Fig. 2 and the
Supplemental Material [30]). In Fig. 2(b), the transition
between the three regimes can be clearly identified.
The spin-wave dispersion also explains the ‘‘diffusive’’

effect encountered at small � [see Figs. 1(e) and 1(f)].
With decreasing �, the dispersion becomes flatter around
the sides of the Brillouin zone. Therefore, there are many
slow quasiparticles that remain in the central region for
a long time, giving rise to an apparent diffusive core of
high density.
Scaling of entanglement entropy.—To numerically con-

firm the validity of the pseudoparticle picture, we analyze
within the TDVP the increase of the EE of half of the chain
SL=2ðtÞ. Interestingly, for all values of � considered, the

FIG. 2 (color online). (a) Spin-wave dispersion relations. Inset:
for �> 2, !k is a deformed cosine, similar to the short-range
case, while at �< 2, it develops a cusp at k ¼ �, which
becomes sharper with decreasing �. Main panel: for �< 1,
the number of modes with diverging group velocity jvgj>
ðL=2Þ=t0 increases with L for any t0 > 0. Plot for t0 ¼ 50,
with L ¼ 20 (six modes with jvgj> ðL=2Þ=t0, circles) and

L ¼ 40 (eight modes, triangles). (b) Maximal group velocity
for different L (at � ¼ �=20). Top: for �> 2, vmax is essentially
independent of �, while it increases sharply below � ¼ 2.
Bottom: for �> 1, vmax=L tends to zero for L ! 1. The time
tb � L=ð2vmaxÞ at which excitations reach the system boundary
diverges. For �< 1, vmax=L increases with system size.
Information about the local quench reaches the entire system
instantaneously.
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excess entropy �SL=2ðtÞ initially increases as a power of t

and then saturates to a value very close to�SL=2ðtÞ ¼ log2,

independent of system size [see Fig. 3(a)].
The initial growth is faster for smaller �, in agreement

with the presence of faster pseudoparticles. Remarkably,
due to these fast pseudoparticles the initial growth is
stronger than logarithmic, which normally is considered
the worst-case scenario, occurring at quenches to a critical
point. Before entering the saturation regime, systems with
smaller � start to evolve slower, in agreement with the
appearance of a diffusive evolution. The fact that the
excess of EE of a block saturates to a value independent
of its size is in remarkable contrast to the ground-state
properties. This effect finds a natural explanation in the
semiclassical picture of pseudoparticles: the states that
dominate the time evolution are states with only one pseu-
doparticle; the value �SL=2 ¼ log2 is then immediately

understood as coming from the two orthogonal possibil-
ities of the pseudoparticle being either in the left or in the
right half chain.

A further confirmation comes from the half-chain
entanglement-spectrum evolution hnðL=2; tÞ ¼ log�n

L=2ðtÞ,
where �n

L=2 is the nth eigenvalue of the reduced density

matrix of half of the chain. The spectrum is dominated by
only a few eigenvalues, with two of order 1 as expected from
the log2 asymptote, and a huge number of eigenvalues
below 10�5 [see Fig. 3(b)]. These eigenvalues grow steadily,
but we expect that they do not affect equilibrium properties,
since they are associated to higher energies and thus, at long
times, their effect should average out. These findings are in
agreement with similar observations in short-range systems

[21,23,45–53], where semiclassical models provided a good
description of these kinds of out-of-equilibrium dynamics.
Experimental implementation.—Due to their qualitative

difference, the three dynamical regimes can be observed
already in small experimental systems. A clear signature is,
e.g., the speed with which excitations reach the boundary
and its scaling with system size. Alternatively, the ratio of
the wave-front maximum and the subsequent minimum
distinguishes the short-range and the weakly long-range
regime. In the former, it increases with system size, thus
defining an increasingly sharp wave front. In the latter, it
decreases until the wave front disappears.
Finally, let us remark that although the abstract LRTI

model displays nonlocal behavior, an actual physical imple-
mentation will obey locality, as one would expect. For
example, in the trapped-ion implementation, Hamiltonian
(2) describes an effective dynamics for electronic states of
the ions, which are coupled by collective phonon modes by
employing laser fields [26,54,55]. The phonon dynamics can
be neglected on time scales much larger than those associ-
ated to the detuning between laser driving and phonon
frequencies. These time scales are typically Oð10 �sÞ.
Moreover, the derivation of Eq. (2) employs a rotating-
wave approximation in the phonon frequencies, correspond-
ing to neglecting terms that average to zero on time scales
Oð1 �sÞ. When the group velocity reaches these time scales,
the effective Hamiltonian (2) breaks down, just as how the
Coulomb potential is no longer valid when charged particles
move close to the speed of light. On the other hand, the time
scale of the spin interactions is typically @=J ¼ Oð1 msÞ.
Therefore, although the group velocities of the spin system
cannot truly diverge, they can be several times larger than the
scale set by J. This still provides a drastic effect that can be
explored in typical practical implementations [9–14].
Conclusions.—Via quasiexact numerics based on tensor

networks and analytical calculations of the spin-wave
dispersion, we have identified three qualitatively different
regimes of the nonequilibrium dynamics in the LRTI model,
indicating different degrees of the breakdown of locality.
The quasiparticle dispersion undergoes drastic changes at
� ¼ 2 and � ¼ 1, marking a transition from short-range
over weakly long-range to strong long-range physics. In the
last case, diverging quasiparticle velocities lead to a practi-
cally instantaneous spread of excitations through the entire
system. These regimes are independent of the underlying
ground-state phase. It will be interesting to study how these
findings carry over to larger dimensions. Finally, we have
outlined how to identify the different degrees of nonlocality
in typical trapped-ion experiments, and we hope our find-
ings will inspire experiments along these lines.
Identifying violations of the Lieb-Robinson bounds—

besides establishing the presence or absence of causality in
systems with long-range interactions—may pave the way
for extending well-established results about the complexity
of ground states [17,18], and the relation between the

FIG. 3 (color online). (a) Growth of entanglement entropy. The
excess �SL=2ðtÞ grows initially as a power law with t for all

considered �. It then saturates to log2 independent of system
size, as expected from the pseudoparticle picture. This is shown
in the insets where we compare the saturation value for chains of
different length and for completeness show that there is no
residual dependence of the saturation value on the MPS matrix
dimension �. (b) Evolution of the entanglement spectrum. The
entanglement spectrum is dominated by two eigenvalues, which
in the pseudoparticle picture correspond to the pseudoparticle
being in the left or the right part of the chain. The other
eigenvalues are significantly smaller, confirming the quality of
semiclassical descriptions of the evolution.
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decay of correlations and the scaling of entanglement
[19,20]. Moreover, the Lieb-Robinson bound has impor-
tant implications for thermalization [56,57]: if the system
locally equilibrates to a generalized Gibbs ensemble,
time-dependent correlation functions are described by the
same ensemble [58]. These are key issues that have strong
technical consequences for our ability to simulate the quan-
tum system on a computer. Indeed, simulations based on
tensor networks such as MPS, or the multiscale entangle-
ment renormalization ansatz (MERA), typically require a
small amount of entanglement—but due to Lieb-Robinson
bounds, correlations build up linearly during time evolution,
making numerical simulations often unfeasible [59].
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Note added.—During the review process for this Letter,
two related articles appeared, one that studies the LRTI
under global quenches [61], and one that studies local
quenches in a LRTI with interactions modeled after a
realistic trapped-ion string with nonuniform interion dis-
tances [62]. Both obtain a transition of dynamical behavior
[63,64] at the same value � ¼ 1 as this Letter.
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[8] R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher,
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