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We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates

and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of

the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov

and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically

at the zone center. Using modern renormalization group methods, we update and extend Abrikosov’s

classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable

provided time-reversal and cubic symmetries are maintained. We determine the universal power-law

exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include

conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore,

we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking

perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases

possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly

with magnetization �xy �M0:51.
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Divining the nature of critical non-Fermi-liquid (NFL)
phases of electrons is one of the most outstanding problems
in correlated electron systems, such as cuprates, pnictides,
and heavy fermion materials [1–4]. Motivated by these
materials, theoretical research has focused on models
with large Fermi surfaces (or Fermi pockets). In spite of
the recent technical advances [5], a clear resolution of
experimental puzzles awaits deeper understanding.

In this work, we uncover another venue for NFL physics.
Recent theory and experiment have revealed a new frontier
for correlated phenomena: Mott correlation physics in
materials with strong spin-orbit coupling (SOC) [6,7]. Of
particular interest in this regard are the 5d transition metal
oxides, where compelling evidence has been built for Mott
phenomena driven cooperatively by SOC and Coulomb
interactions [6–8]. This paper explores distinct NFL states
that exist only in the strong SOC regime.

We are particularly motivated by the pyrochlore iridates
A2Ir2O7, where A is a lanthanide element [9,10]. These
materials display T > 0 metal-insulator transitions, with
the metal-insulator transition temperature decreasing
with increasing A radius. The progression culminates with
Pr2Ir2O7, which is a highly unconventional metal down to
the lowest temperatures [11,12]. It displays logarithmic
NFL behavior of the magnetic susceptibility and a remark-
ably enormous zero field anomalous Hall effect (AHE) in
the absence of any measurable magnetization [11,12].

With these studies as motivation, we utilize prior studies
of the electronic structure of pyrochlore iridates [13–15] to
show that a minimal description for the electronic states in
their paramagnetic phase is a storied Hamiltonian from

semiconductor physics: the Luttinger model of inverted
band gap semiconductors [16]. This model has gained
recent notoriety for its relevance to HgTe, the starting
material for some topological insulators [17–20]. While
HgTe is a weakly correlated material where band structure
alone provides a sufficient description, in the 5d mate-
rials, the Luttinger Hamiltonian must be supplanted by
interactions.
In this Letter, we carry out such an analysis, rediscover-

ing and extending a storied analysis by Abrikosov and
Beneslavskii of Coulomb forces on the Luttinger problem
[21,22]. Using modern renormalization group (RG) tech-
niques, we confirm Abrikosov’s conclusion that long-range
Coulomb interactions convert the quadratic band touching
into a quantum critical NFL, prove the stability of the state
within an � expansion, and calculate the full set of anoma-
lous dimensions characterizing the state. Consequently,
we call the resulting phase a Luttinger-Abrikosov-
Beneslavskii (LAB) state. While the LAB phase is stable
in the presence of time-reversal and cubic symmetries, we
show that it is a ‘‘parent’’ state for other exotic states that can
be reached by breaking either or both of these: metallic and
double-Weyl semimetallic phases with enormous AHEs,
and topological insulators. We discuss the implications for
the iridates at the end of the Letter.
The LAB phase itself has striking properties. Its NFL

nature is revealed directly by algebraic singularities in the
electron spectral function (probed in angle-resolved
photoemission) and in optical conductivity, as well as
indirectly through many power-law thermodynamic and
response functions.
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We now turn to the exposition of these results. We
consider the paramagnetic band structure based on prior
work [13–15], which argued that the states at the zone
center (� point) near the Fermi energy are comprised of
the four-dimensional representation, which can be

described by ‘‘angular momentum’’ operators ~J (which
are j ¼ 3=2 matrices) transforming as the T2 representa-
tion of the cubic group. In our minimal model, we assume
only these states close to � are important. Then, k � p
theory and cubic symmetry determine the band structure
in their vicinity to be precisely described by the Luttinger
Hamiltonian with three effective mass parameters [16,23]
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~M0Þ=
ð4Mc � 5 ~M0Þ. Henceforth, we assume M0 >m, which
describes conduction and valence bands touching quadrati-
cally at E ¼ k ¼ 0, where the chemical potential for the
undoped material crosses.

The LAB is obtained by adding to this the long-range
Coulomb interaction. We implement the latter by a scalar
potential’, which in the Euclidean path integral formalism
gives the action

SL ¼
Z

d�ddxfc y½@� � ie’þ Ĥ 0�c þ c0
2
ð@i’Þ2g;

(2)

with Ĥ 0 ¼ H 0ð�i ~rÞ and c0 ¼ 1=4�. Here, c is a four-
component spinor, but subsequently we will artificially add
an additional UðNfÞ flavor index, which allows a check on

our calculations by large Nf methods; the physical case is

Nf ¼ 1. Equation (2) contains, in addition to the three

mass parameters, the Coulomb coupling constant e. For
e ¼ 0, scale invariance is manifest, with the scaling dimen-
sions ½x�1� ¼ 1, ½��1� ¼ z, ½c � ¼ ðd=2Þ, ½ð1=mÞ� ¼ z�
2, and ½’� ¼ ðdþ z� 2Þ=2. Here, we introduce the
dynamic critical exponent (z), which is naturally z ¼ 2
with e ¼ 0 but will become nontrivial with interactions.

Directly in the physical case d ¼ 3, the dimension of the
coupling constant is ½e2� ¼ 1, so Coulomb interactions are
strongly relevant. Therefore, we employ the " ¼ 4� d
expansion to control the RG analysis. As is familiar from
quantum electrodynamics, three one loop Feynman dia-
grams contribute to leading order in ": the fermion self-
energy, boson self-energy, and vertex correction. Here, we
show that the relevance of Coulomb interactions signals,

rather than a flow to strong coupling and a symmetry
breaking instability, the formation of a new stable interact-
ing fixed point, which describes the critical non-Fermi-
liquid LAB state (Abrikosov’s analysis tacitly assumes this
stability).
The RG is carried out perturbatively in e but nonpertur-

batively in the mass parameters. Thus, a full treatment
gives nontrivial and complete beta functions for the two
dimensionless mass ratios m=M0 and m=Mc; these are
given in the Supplemental Material [24]. The analysis of
the full RG shows, however, that there is a single stable
isotropic fixed point corresponding to m=M0¼m=Mc¼0,
so for simplicity, we quote in the main text only the results
in the vicinity of this point.
In this limit, the leading contribution to the bosonic self-

energy becomes

1

Nf

�’ðq; 0Þ ¼ �ð2mÞe2
�Z ddk

ð2�Þd
1

k4

�
� q2; (3)

where we took the ! ! 0 limit because frequency depen-
dence is subdominant. The divergence should be absorbed
by rescaling the bosonic field ’ ! e��bd‘’ upon reduc-
tion of the hard momentum cutoff � ! e�d‘�, which
defines the RG parameter ‘. This gives the bosonic anoma-
lous dimension �b ¼ 2Nfu [25], where the dimensionless

coupling constant is u ¼ ðme2=8�2c0�
4�dÞ, which has the

physical meaning in d ¼ 3 of the ratio of the real space
cutoff to the effective Bohr radius. The frequency depen-
dence of the one loop fermionic self-energy and the vertex
correction both vanish, the result of a Ward identity. For
k � 0, the fermion self-energy gives mass corrections, e.g.,
�ð1=mÞ ¼ 8u=ð15mÞ � d‘ to leading order. Detailed
analysis is given in the Supplemental Material [24].
Given these calculations, we choose z ¼ 2� 8u=15 to

keep the mass m fixed, which gives the RG equations, to
lowest order in m=Mc, m=M0,

d
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From the first equation above, we find the fixed point
coupling and hence dynamical exponent

u� ¼ 15

30Nf þ 8
"; z ¼ 2� 4

15Nf þ 4
"; (5)

and since u� > 0, the second line in Eq. (4) implies both
m=M0 and m=Mc are irrelevant. This establishes the
existence and nature of the stable, isotropic fixed point
describing the LAB phase. As a check, we have carried
out a large Nf expansion, which gives the same bosonic

anomalous dimension as in the " expansion at the one-loop
level, supporting the stability of the LAB phase.
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The presence of the stable interacting fixed point can be
understood physically as a balance of partial dynamical
screening of the Coulomb interactions by electron-hole
pairs and mass enhancement of the same quasiparticles
by pairs. This situation is in sharp contrast to the case of
a vanishing indirect band gap, for which to leading order in
the long-range Coulomb interaction electrons and holes are
separately conserved, so there is no screening by virtual
electron-hole pairs, and exciton formation destabilizes the
putative gapless state [26].

Using the RG, we can evaluate the anomalous dimension
of any physical operator. By charge conservation, ½c yc � ¼
d. Because of the isotropy of the fixed point, there are only
two nontrivial values for the other charge-conserving fer-
mion bilinear operators.We obtain ½c y�ac � ¼ dþ �1 and
½c y�abc � ¼ dþ �12, where �a are the (time-reversal in-
variant) Dirac gamma matrices, �ab ¼ �ði=2Þ½�a;�b�
are time-reversal odd, and a; b ¼ 1; 2; . . . ; 5. Using the
standard operator insertion technique, we find �1 ¼
�ð6=15Nf þ 4Þ" and �12 ¼ �ð3=15Nf þ 4Þ". These op-

erators describe many physical observables, e.g., the
‘‘angular momentum’’ operator Jz � c yð��34 � 1

2 �12Þc .

The negative anomalous dimension of these operators sug-
gests a schematic picture of power-law excitons due to
electron-hole attraction. For pairing channels, we find positive
anomalous dimensions, consistent with this view. The local
pairing channel has �pairing ¼ ðu�=5Þ ¼ ð3=30Nf þ 8Þ�.

Using these results, we obtain thermodynamic responses

such as the specific heat cv � Td=z � T1:7 and the spin

susceptibility �ðTÞ � a þ bTðd�zþ2�12Þ=z � a þ bT0:5,
with some constants a and b. Interestingly, the nonlinear

susceptibility �3 ¼ @3M=@H3jH¼0 � T�ð3z�4�12�dÞ=z �
T�1:7 diverges, as in spin glasses but with completely
different physics. Comparing the scaling of current
and electric field gives the usual result ½�ij� ¼ d� 2.

Consequently, the temperature and frequency dependence

of the conductivity is �ð!; TÞ � T1=zF ð!=TÞ, and a clean,
undoped LAB is therefore a power-law insulator, where
F ðxÞ is a scaling function for optical conductivity.

We now turn to the effect of applied strain and Zeeman
field upon the LAB. These perturbations break cubic or
time-reversal symmetries and thus destabilize the LAB.
Because of the isotropic nature of the LAB fixed point,
the response to the Zeeman field alone is to leading order
independent of its direction (the cubic mass 1=Mc can be
‘‘dangerously irrelevant,’’ however—see below), sowe take
it to lie along the (001) direction.We consider for simplicity
tetragonal strain which preserves C4 rotation about this axis
(in the absence of Zeeman field, the direction of strain is
again unimportant). This leads to the perturbations

H 0 ¼ ��ðJ2z � 5

4
Þ �H½cosð�ÞJz þ sinð�ÞJ3z �; (6)

where � parametrizes the strain, H is the Zeeman field, and
� controls the strength of the cubic Zeeman term allowed by

the cubic symmetry [27,28]. Using the RG results, the
dimensions of these perturbations are ½�� ¼ z� �1 � 2:1
and ½H� ¼ z� �12 � 1:9; i.e., strain is slightly enhanced
while the Zeeman field is slightly suppressed by interac-
tions. However, both dimensions are positive and close to 2,
so that they are strongly relevant. They flow to strong
coupling under the RG, and the fate of the system must
be reanalyzed in the limit.
To do so, we assume, and check self-consistently, that

interactions have weak effects at strong coupling, and simply
solve the quadratic Hamiltonian (withm=M0 ¼ m=Mc ¼ 0)
in the presence of the renormalizedH 0. The result depends
upon the dimensionless quantities � and the renormalized

coupling ratio � ¼ ð�=HÞR � �=Hðz��1Þ=ðz��12Þ. For
H ¼ 0 (� ¼ 1), we have time-reversal invariance, and we
recover the known result that strain � > 0 induces a gapped,
3d topological insulator phase, as observed in HgTe [19].
The situation in an applied Zeeman field is more interesting.

Notice that for ~k ¼ kẑ, Jz is a good quantum number, and
there is no level repulsion between bands of different Jz. This
allows (nondegenerate) bands to cross along this axis, which
indeed occurs when j�j is not too large. Further analysis in
the Supplemental Material [24] shows that these crossings
correspond to a pair of double-Weyl points, with linear
dispersion along the z axis and quadratic dispersion normal
to it. These points are strength�2 monopoles in momentum
space. Away from the kz axis, electron and hole pockets may
accidentally cross the Fermi energy. If this does not occur,
one has a pristine double-Weyl semimetal, which occurs for

the angular range �1 	 � 	 �2, where �1 ¼ �tan�1½ð8þ
4

ffiffiffi
3

p Þ=ð7 ffiffiffi
3

p þ 26Þ� and �2 ¼ tan�1½ð8� 4
ffiffiffi
3

p Þ=ð7 ffiffiffi
3

p �
26Þ� for � ¼ 0, as shown in the horizontal axis of Fig. 1.

Weyl

Weyl

Insulator

Metal

0 4 2
3
4

1

2

FIG. 1 (color online). Phase diagram of the perturbed LAB in
the space of renormalized strain to Zeeman field ratio � 

ð�=HÞR versus cubic Zeeman angle �. The subscript (R) is for
anomalous dimensions of strain and Zeeman field (see the text).
‘‘Weyl’’ denotes the (double-)Weyl semimetal, ‘‘Ins.’’ the insu-
lator, and ‘‘Metal’’ a metallic phase which has Weyl points
shifted from the Fermi energy in the region below the dashed
line. For H ¼ 0, the insulator is a topological insulator.
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When 0< j�j<1, we observe insulating, double-Weyl
semimetal and Weyl metal (with coexisting electron-hole
pockets) phases, as shown in Fig. 1. Note that in all these
phases, the Coulomb interactions become either unimpor-
tant (in the insulator), screened (in the metal), or margin-
ally irrelevant (in the Weyl semimetal), justifying our
treatment of the phase diagram to a first approximation.

More subtle effects may make small modifications to
this picture. Coulomb interactions can destabilize some of
the quantum phase transitions in Fig. 1, leading to inter-
mediate phases. When the magnetic field is applied along a
low symmetry axis, the double-Weyl points can split into
multiple single-Weyl points, once the effects of the cubic
mass 1=Mc are included, which are dangerously irrelevant
in this case.

A striking experimental consequence of this phase dia-
gram is the AHE due to the Zeeman field, which could
originate either from an external magnetic field or as an
exchange field due to local moments in the material. The
latter is particularly interesting in light of the experimental
results on Pr2Ir2O7, which shows a large AHE in a regime
where the magnetizationM is immeasurably small [11,12].
On symmetry grounds, �xy � 0 implies M � 0, but evi-

dently�xy is unusually large relative toM. This behavior is

in fact characteristic of the LAB: since the Hall conduc-

tivity has dimensions of inverse length, we expect �xy �
H1=ðz��12Þ � H0:51. In the situation relevant for Pr2Ir2O7,
the Zeeman field is generated by Kondo exchange with the
Pr moments, so H � JKM, with M the (dimensionless) Pr
magnetization, which implies a highly unconventional sub-
linear dependence of �xy onM for the pristine LAB. If the

Fermi level is displaced from the band touching by an
amount �F, then we expect, treating the above power as a

square root,�xy � ðe2=hÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmH=@2Þp
SðH=�FÞ, where S is a

scaling function (see the Supplemental Material [24]). This
gives an order of magnitude quantitative estimate

�xy � 103 ��1 cm�1 �

8>>><
>>>:

ffiffiffiffiffi
m
me

q ffiffiffiffiffi
JK
Ry

q ffiffiffiffiffi
M

p
JKM � �F

ffiffiffiffiffi
m
me

q
JKffiffiffiffiffiffiffiffi
�FRy

p M JKM � �F;

(7)

where Ry ¼ 13:6 eV is the Rydberg, andme is the electron
mass. The lower regime gives�xy � 0:1 ��1 cm�1, within

an order of magnitude of observations in Pr2Ir2O7 [12], for
parameters m� 20me (estimated from the calculations in
Ref. [15]), �F � 10 meV, JK � 100 K (estimated from the
measured Curie-Weiss temperature), and M� 0:01.

Another interesting experimental observation in
Pr2Ir2O7 is a diverging magnetic Gruneisen number
�H ¼ ð1=TÞð@T=@HÞjS in the zero field limit [29–31]. In
a purely electronic system with no local moment contribu-
tion to the entropy, we can readily obtain the behavior of
the LAB in the low temperature limit

�HðH; TÞ ¼ � d� y0z

y0ðz� �12Þ
1

H
; (8)

which depends upon the exponent y0 defining the tempera-
ture dependence of the specific heat C� Ty0 of the LAB
phase. In the Weyl metal, y0 ¼ 1 and �H < 0, while for
isolated double-Weyl points, y0 ¼ 2 and �H > 0. Thus,
one may imagine a sign change of the Gruneisen number
when field or strain is varied. Note that in Pr2Ir2O7, there is
certainly a large local moment contribution to the entropy,
so that Eq. (8) is not literally applicable. Nevertheless, the
LAB physics may play some role in this quantity.
In conclusion, we have described a novel NFL phase

occurring in correlated strong SOC systems, with a natural
connection to the pyrochlore iridates. Even with weak
correlation effects, some of the phenomena discussed
here can be observed with only minor modifications, and
it would be interesting to search for them in HgTe. Future
theoretical studies should include a more comprehensive
treatment of the breaking of cubic symmetries and the
effects of disorder and doping.
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