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A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed

based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a

potential, shows no spatial periodicity, but it is driven by a time-dependent field coupling highly

nonlinearly to one of its degrees of freedom (e.g., �qn). The band structure in quasienergy arises as a

consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose an

explicit model to realize such a phase space crystal and analyze its band structure in the frame of a tight-

binding approximation. The phase space crystal opens new ways to engineer energy band structures, with

the added advantage that its properties can be changed in situ by tuning the driving field’s parameters.

DOI: 10.1103/PhysRevLett.111.205303 PACS numbers: 67.85.�d, 03.65.�w, 05.45.�a, 42.65.Pc

The high interest in the manipulation of energy band
structures, with the aim to create exotic materials or to
tailor their properties for specific applications, has opened
a research field of band structure engineering [1,2]. The
technology relies on doping [3,4] or the application of
external magnetic and electric fields to modify the proper-
ties of materials such as semiconductors or graphene [5–8].
Furthermore, a variety of artificial periodic structures, such
as photonic and phononic crystals [9–13] or metamaterials
[14–16], are being investigated to provide band structures
optimized for specific devices.

A system that is driven by a periodic external field shows
a discrete time translation symmetry. In the framework of
the Floquet theory [17] the concepts of quasienergy and
Floquet states [18] were introduced to account for this
time periodicity. Normally, the quasienergy spectrum of a
localized system, e.g., of an ion trapped in a potential,
shows no band structure. But for a periodically driven
crystalline material, as a result of combined periodicities,
the quasienergy spectrum exhibits a band structure [19–22]
in quasimomentum space, and even a new kind of exotic
material, namely, a Floquet topological insulator [23], has
been proposed.

Here we explore a new discrete symmetry that can be
used to create exotic materials and to manipulate their band
structures. The Hamiltonian of any system depends on two
conjugate variables, momentum and coordinate, which
define the phase space. As we will show, it is possible to
create a discrete symmetry in phase space. This leads to
specific transformations, which mix momentum and coor-
dinate, but leave the Hamiltonian unchanged. We call such
a system a phase space crystal. In natural crystals, a peri-
odic potential leads to extended states (Bloch states) in real
space. The phase space crystal has eigenstates, which are
localized in real space but are nevertheless energetically so
tightly spaced that they form bands. Since the phase space

crystal arises due to driving, it continuously emits radiation.
As a consequence of the band structure of the quasienergy,
the emission spectrum shows characteristic features, which
should be observable experimentally by methods described
in the literature [24,25].
Model and RWA.—As a specific example, we consider a

nonlinear oscillator, driven by an external field coupling
nonlinear to the coordinate, with Hamiltonian

HðtÞ ¼ p2

2m
þ 1

2
m!2

0q
2 þ �

2
q4 þ 2f cosð!dtÞqn: (1)

Here, !0 is the frequency of the oscillator, and !d is the
driving frequency. The nonlinearity is characterized by the
exponent n. If n ¼ 1, the model (1) is the linearly driven
Duffing oscillator [26]; for n ¼ 2, it is a parametrically
driven oscillator [27]. In the present Letter, we are inter-
ested in the limit of large n, say of order n ¼ 10. There
are various ways to create such high-power coupling. One
is based on so-called ‘‘power-law trapping’’ potentials
VðqÞ � qn, which have been explored for ultracold atoms
[28–30]. There are reports of static or adiabatically slow
changing of the power-law potential [31–35]. The driving
we propose in Eq. (1) can be realized by making the
power-law trapping potential oscillate with frequency !d.
Alternatively, one can create high-power driving terms by
coupling a trapped ion to an external oscillating point
charge or electric dipole. We will further discuss ways to
create nth power driving terms at the end of this Letter.
We assume that the driving frequency !d is close to n

times !0; i.e., the detuning �! � !0 �!d=n is much
smaller than !0. We perform a unitary transformation of

the Hamiltonian HðtÞ via Û ¼ eið!d=nÞâyât, where â is the
annihilation operator of the oscillator. Dropping fast
oscillating terms, in the spirit of the rotating wave appr-
oximation (RWA), we arrive at the time-independent
Hamiltonian
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ĤR ¼ @�!âyâþ 3�@2

4m2!2
0

âyâðâyâþ 1Þ

þ f

�
@

2m!0

�
n=2ðâyn þ ânÞ: (2)

Although RWA is widely used in the study of driven
systems, it is not immediately clear that it is valid for
highly nonlinear coupling (e.g., �qn). To test it, we per-
formed an exact numerical simulation based on the full
Floquet theory, not relying on the approximation, and
present the results in the Supplemental Material [36].
The conclusion is that as long as j�!j=!0 < 2� (see the
definition of � below) the RWA is well justified.

Discrete symmetry.—The RWA Hamiltonian Eq. (2) dis-
plays a new symmetry not visible in Eq. (1). To illustrate it,
we first make use of a semiclassical approximation, replac-
ing the operator â by a complex number, and plot the

resulting Hamiltonian ĤR (2) in the phase space spanned
byRe½a� and Im½a�. The results, seen in Figs. 1(a) and 1(b),
clearly display the discrete angular periodicity of ĤR. For
the following theoretical analysis, we define a unitary

operator T̂� ¼ e�i�âyâ with the properties T̂y
� âT̂�¼ âe�i�

and T̂y
� â

nT̂� ¼ âne�in�. It is easy to see that the RWA
Hamiltonian is invariant under discrete transformation

T̂y
� ĤRT̂� ¼ ĤR for � ¼ 2�=n.

The discrete angular symmetry suggests introducing the

radial and angular operators r̂ and �̂ via â ¼ e�i�̂r̂=
ffiffiffiffiffiffi
2�

p
and ây ¼ r̂ei�̂=

ffiffiffiffiffiffi
2�

p
. They obey the commutation relation

½r̂2; ei�̂� ¼ 2�ei�̂ (3)

where � ¼ �3�@=ð4m2!2
0�!Þ is the scaled dimensionless

nonlinearity. Using this definition, we get ĤR ¼
�ð@�!=�Þĝ, with

ĝ ¼ 1

4
ðr̂2 þ �� 1Þ2 þ 1

2
�½ðr̂ei�̂Þn þ ðe�i�̂r̂Þn�: (4)

The dimensionless driving strength is

� ¼ � 2�f

@�!

�
m!0�!

�3�

�
n=2

:

For red detuning, �!< 0, considered in the following
�> 0.
Semiclassical analysis.—We first analyze the properties

of the phase space crystal in the semiclassical limit � ! 0.
For vanishing driving � ¼ 0, the quasienergy g is inde-
pendent of the angle �, which means g is invariant under
continuous phase space rotation. However, for finite
driving � � 0, the quasienergy g is only invariant under

discrete phase space rotations ei�!eið�þ�Þ with � ¼ 2�=n.
The periodic arrangement of atoms in a crystal replaces
the continuous translation symmetry by a discrete one.
Similarly, in a phase space crystal the stable points break
the continuous rotation symmetry and define the periodic-
ity for the phase space crystal. In Fig. 1(b), the stable points
are the n minima (rm, �m) of g. Between every two
neighboring stable points there is a saddle point (rs, �s).
In the vicinity of stable points, the quasienergy g creates

effective potential barriers for angular and radial motion
U� and Ur, respectively. Both are shown in Fig. 1(c).
Because of thermal or quantum fluctuations, the states
may jump or tunnel between neighboring stable points
across or through the angular potential with height U� �
2�. The tunneling determines the band structure to be
discussed below. In the Supplemental Material [36], we
show that the height of the radial potential barrier Ur

decreases as the driving� increases, up to a critical driving
strength �c ¼ ð1� r2cÞ=ðnrn�2

c Þ with r2c¼ðn�2Þ=ðn�4Þ,
above which the stable points disappear. In the limit of
large n, we find �c � 2=½enðn� 2Þ�, where e is the Euler
constant. In the following, we assume�<�c to guarantee
the existence of stable points.
Quasienergy band structure.—In the quantum regime,

r̂ and �̂ no longer commute. In Fig. 2(a), we show the
eigenvalue spectrum of the quasienergy Hamiltonian
obtained from a numerical diagonalization. In the limit of
vanishing driving � ! 0, the spectrum is quasicontinuous
whereas for � � 0 gaps open from the bottom of the
spectrum. According to Bloch’s theorem, the eigenstates
c mð�Þ of the quasienergy Hamiltonian ĝc mð�Þ ¼
gðmÞc mð�Þ have the form c mð�Þ ¼ ’mð�Þe�im�, with a

(a)

(c)

(b)

FIG. 1 (color online). Quasienergy g in phase space.
(a) g / HR versus Re½a� and Im½a� for power n ¼ 10 and driving
strength � ¼ 0:4�c. For nonzero driving, the quasienergy is
invariant under discrete phase space rotations ei� ! eið�þ�Þ
where � ¼ 2�=n. (b) A cut through the bottom of the quasi-
energy g in (a). There are n stable states (yellow closed curves)
and n saddle points (unstable states, between two stable states)
arranged periodically in angular direction. A local coordinate
system (x, p) is defined near the bottom of a stable state.
(c) Quasienergy g versus radius r (left) and angle � (right).
Stable states are confined by the radial potential barrier Ur and
the angular potential barrier U�. For the latter, we plot two wells
between � ¼ �� and � ¼ �. The localized states confined in
each well (green lines) are coupled by quantum tunneling.
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periodic function ’mð�þ �Þ ¼ ’mð�Þ. Here, the integer
number m, which we call a ‘‘quasinumber,’’ plays the role

of the quasimomentum k
*
in a crystal. Whereas the quasi-

momentum k
*
is conjugate to the coordinate, the quasinum-

ber m is conjugate to the phase �. In Fig. 2(b), we plot the
quasienergy band structure in the reduced Brillouin zone
m� 2 ð��;��. Here, we relabel the eigenstates c mð�Þ by
c lmð�Þ, where l ¼ 1; 2; . . . is the label of the bands counted
from the bottom. For finite values of n (in our numerical
simulation we chose n ¼ 10), the quasienergy band spec-
trum is discrete. It would become more continuous in the
limit of large n.

(i) Band gaps.—The band structure is characterized by
band gaps and bandwidths. If the driving is weak,� � �c,
only the first gap is visible. The gaps between higher bands
are too narrow to distinguish them from the level spacings
due to finite n. In perturbation expansion, we find for the
first gap and bandwidth �1 � � and d1 � �2n2=4�
�=2þ�2=ð2�2n2Þ, respectively. I.e., the gap �1 increases
linearly with the driving, whereas the bandwidth d1
decreases with driving. For stronger driving, the spectrum
of the lth band is approximately

glðmÞ ¼ El � 2jJlj cosðm�þ ��Þ; (5)

centered around El and with bandwidth dl ¼ 4jJlj. The
result shows a surprising asymmetry. From the plot of the
quasienergy in Fig. 1(b), we would have expected a degen-
eracy gðmÞ ¼ gð�mÞ, since clockwise and anticlockwise
motion should be equivalent, as in the case of orbital
motion. However, in the present case, the two degrees of
freedom of phase space Im½a� and Re½a� do not commute,
and as a result the quasienergy structure is asymmetric.
The degree of asymmetry is characterized in Eq. (5) by the
asymmetry factor �.
In the case of sufficiently strong driving, several levels

are localized in each stable point, as shown by Fig. 1(c)
(right figure). The band structure can be explained by a
tight-binding model: the gaps are opened by level spacings
of localized states at the same stable point, whereas the
bandwidth is determined by quantum tunneling between
nearest neighbors. At the bottom of each stable point, to
lowest order, the localized Hamiltonian can be approxi-
mated by a harmonic form with effective frequency

!e ¼ f�n2rn�2
m ½3r2m � 1� nðn� 1Þ�rn�2

m �g1=2 (see the
Supplemental Material [36]). Since rm � 1, the localized
quantum level spacing is �!e � n�

ffiffiffiffiffiffiffi
2�

p
. The level spac-

ing corresponds to the distance between two centers of
adjacent bands. The anharmonicity leads to higher-order
corrections to the level spacings, for levels close to the
bottom proportional to �l�2, where l is the label of the
band. This negative correction means that higher level
spacings decrease linearly. The tight-binding approxima-
tion is valid for a �> �!e=2, where the angular potential
barrier U� � 2� is high enough to confine at least one
quantum level in each stable point.
(ii) Asymmetry factor.—The most unusual feature of

the band structure (5) is the asymmetry characterized by
the factor �. It results from the following property of the
operator r̂2: in � representation, one could conclude that
the operator r̂2 with form �i2�@=@� satisfies the commu-
tation relation (3) exactly. However, in this case the eigen-
values of r̂2 could be negative, which would be unphysical.
We, therefore, define a local coordinate system (x, p)
measured from the bottom of a stable point as shown in
Fig. 1(b). In the limit of large n, we have local operators

x̂ � �rð�̂� �=2Þ and p̂ ¼ r̂� �r, where �r is the average
radius. Their commutation relation is ½p̂; x̂� ¼ i�. Thus,
in ‘‘x representation’’ we have p̂ ¼ i�ð@=@xÞ and r̂ ¼ �rþ
p̂ ¼ �rþ i�ð@=@xÞ. Dropping the �2 term, we get r̂2 �
�r2 þ 2i��rð@=@xÞ. As a result, the first term of quantum
quasienergy Hamiltonian Eq. (4) becomes ½2i��rð@=@xÞ þ
�r2 þ �� 1�2=4, which indeed distinguishes anticlockwise
and clockwise direction since �r2 þ �� 1 � 0 in general.
In addition, the driving term in the Hamiltonian (4) intro-
duces some asymmetry by changing the average radius �r.
We can explicitly calculate the asymmetry factor � in

the frame of the tight-binding model. The relation between
the Bloch eigenstate c lmð�Þ and the localized state in each
stable point �lð�Þ, as indicated in Fig. 1(c), is given by

(a)

(b) (c)

FIG. 2 (color online). Quasienergy band structure.
(a) Quasienergy spectrum changing from quasicontinuous in
the absence of driving (left) to a band structure induced by finite
driving (right). The gaps start to open from the bottom of the
spectrum. (b) Quasienergy band structure in the reduced
Brillouin zone. Each red dot represents one quasienergy level.
There are n levels in each band. (c) Width of the lowest band d1,
and the asymmetry factor � versus driving. Numerical (triangles)
and approximate (lines) results are compared. The parameters
are � ¼ 1=205, n ¼ 10 for all the figures, and for (b) we choose
� ¼ 0:3�c.
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c lmð�Þ ¼ 1=
ffiffiffi
n

p P
n�1
q¼0 e

imq�T̂q
��lð�Þ. Only the nearest

neighbor coupling Jl ¼ �R½T̂��lð�Þ��ĝ�lð�Þd� is impor-

tant. From T̂��lð�Þ � e�i� �r2=2��lð�þ �Þ, it follows to be

Jl ¼ �ei� �r
2=2�

R
��

l ð�þ �Þĝ�lð�Þd� ¼ jJljei� �r2=2�. The

corresponding quasienergy spectrum of the lth band
then is glðmÞ ¼ R

2�
0 c �

lmð�Þĝc lmð�Þd� � El � Jle
im� �

J�l e
�im� ¼ El � 2jJlj cosðm�þ �r2�=2�Þ. Hence the asym-

metry factor is � ¼ �r2=2�ðmodnÞ. A similar phase shift
for the tunneling amplitude has been found for the special
case of the parametric oscillator (n ¼ 2) in Ref. [37]. For
the bottom band, the average radius is �r1 ¼ 1� �=2þP1

k¼1 �c2k�
2k with average coefficient �c2k given in the

Supplemental Material [36]. To get the average radius of
next higher levels, we use the quantization condition in
phase space ð �r2lþ1 � �r2l Þ�=2 ¼ ��.

In Fig. 2(c), we show the dependence of the asymmetry
factor � on the driving strength �, obtained in both the
tight-binding calculation described above and from a nu-
merical simulation. The asymmetry arises from the phase

of the complex tunneling parameter Jl ¼ jJljei� �r2=2�. The
phase factor ��r2=2� called Peierls phase [38,39] has also
been discussed as a possibility to realize artificial gauge
fields [39,40] for ultracold atoms. For optical lattices, there
are already some proposals to create a controlled Peierls
phase by synthesizing a one-dimensional effective Zeeman
lattice [41] or shaking the lattice [38]. In the present case,
the complex tunneling parameter Jl naturally arises in the
plane of the phase space.

(iii) Bandwidths.—The lth bandwidth is dl ¼ 4jJlj. To
calculate the amplitude of the coupling jJlj, we use the
double-well potential model, as shown by the right plot in
Fig. 1(c). For the analysis of quantum tunneling, the prop-
erty of quasienergy near the saddle point (rs, �s) is impor-
tant. We move the local coordinate system (x, p) defined
above to the saddle point (rs, �s ¼ 0). Now the local
coordinates are given by x � rs� and p ¼ r� rs. To sec-
ond order, the Hamiltonian near the saddle point can be
approximated by

g � 1

2
ms!

2
sp

2 þ�rns cosðn�Þ þ ðr2s � 1Þ2
4

; (6)

where ms!
2
s ¼ @2g=@r2jðrs;�sÞ. Given an energy level El,

one can write jpj as a function of � and calculate the
amplitude of the coupling

jJlj ¼ �!e

2�
exp

�
� rs

�

Z �a

��a

jpjd�
�
: (7)

Here, �a is the turning point that is given by �a ¼
1=ncos�1½ðEl � ðr2m � 1Þ2=4Þ=�rnm�. The integral in the
exponent of Eq. (7) is given by

Z �a

��a

jpjd�¼ 4

n

�
2

ms!
2
s

�
�rns þðr2s�1Þ2

4
�El

��
1=2

Eð�jkÞ;

(8)

where Eð�jkÞ ¼ R�
0 f1� k2sin2�g1=2d� is the elliptic inte-

gral of the second kind with parameters � ¼ n�a=2 and

k ¼ f2�rns=½�rns þ ðr2s � 1Þ2=4� El�g1=2. In Fig. 2(c), we
compare our approximate result for the first bandwidth d1
versus driving � to numerical results. In the tight-binding
regime, they agree well with each other.
Emission spectrum.—The above calculation of quasi-

energy band structure does not account for a dissipative
environment. It renders the time evolution of phase space
crystal nonunitary and induces transitions between quasi-
energy states [42,43]. For a driven quantum system, even
at base temperature T ¼ 0 many quasienergy states can
be excited and transitions between them will contribute to
the emission spectrum [44,45]. The spectral density of the
photons emitted by the driven resonator [46] follows from
Sð!Þ ¼ 2Re

R1
0 dthayðtÞaiste�i!t.

To calculate the correlation function CðtÞ ¼ hayðtÞaist,
we need a master equation that also accounts for the
dissipative evolution caused by thermal and quantum fluc-
tuations. We have checked that a Lindblad-type master
equation [42,44,47–49] is sufficient for the present situation,

@	

@�
¼ � i

�
½g; 	� þ 
ð1þ �nÞD½a�	þ 
 �nD½ay�	

¼ L	: (9)

The dimensionless time � ¼ t�! is scaled by the detuning.
The Lindblad superoperator is defined through D½A�	 �
A	Ay � ðAyA	þ 	AyAÞ=2 where �n ¼ ðe@!0=kBT � 1Þ�1

is the Bose distribution and 
 is the dimensionless damping
scaled by the detuning. We make use of the quantum
regression theorem to calculate the correlation function,

i.e., Cð�Þ ¼ Tr½ayð�Þa	st� ¼ Tr½ayeL�ða	stÞ�. The spec-
tral density Sð!Þ is the Fourier transformation of the

FIG. 3 (color online). Emission spectrum: The top, middle,
and bottom figures are the emission spectrum for the first band,
the second band, and the interband, respectively. The parameters
are � ¼ 1=205, temperature T¼0:5@!0=kB, driving �¼0:4�c,
and damping 
 ¼ 10�4�.
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correlation function Cð�Þ. We choose our parameters to
confine two localized states in each well; i.e., we truncate
our numerical simulation at 2n levels.

The total spectrum can be divided into three parts, as
shown in Fig. 3. The top and middle figures represent
intraband transitions of the first and second band, respec-
tively. The bottom figure corresponds to interband transi-
tions between the first and second bands. The positive and
negative frequencies in the emission spectrum correspond
to absorption of energy from and emission of energy to
the driving field, respectively. The widths of the peaks in
emission spectrum are proportional to the damping 
. The
quasienergy band structure can be directly detected by
analyzing the spectrum of emitted photons in the laboratory.
It should be noticed, however, that the above emission
spectrum is obtained in the rotating frame with frequency
!d=n. Hence, a value of ! in this spectrum represents a
photon with frequency !þ!d=n in the laboratory frame.

Discussion.—The phase space crystal is a general con-
sequence of a discrete rotation symmetry in phase space
and is not restricted to the model presented in detail above.
More generally it can be found for Hamiltonians such as
HðtÞ ¼ p2=2mþm!2

0q
2=2þ VðqÞ þ fðqÞ cosð!dtÞ. For

cold atoms, the nonlinear driving can be created by using
power-law trapping methods. For trapped ions, it can be
caused by an oscillating point charge coupling to the
charged ion via Coulomb interaction, leading to the expan-
sion fðqÞ / 1=ð1� qÞ ¼ P1

k¼0 q
k. In the parameter range

where RWA is valid (i.e., for j�!j=!0 < 2� as derived
in the Supplemental Material [36]), in combination with
the resonance condition !d � n!0, the driving term will
automatically pick up terms an and ayn from qn or terms
ayanþ1 and aynþ1a from qnþ2, etc. All these RWA terms

remain invariant under discrete phase space rotation ei� !
eið�þ2�=nÞ. In the model analyzed above, we further
assumed a nonlinear static potential VðqÞ ¼ �q4=2. Also,
this can be chosen to be more general. If VðqÞ is an even
function of coordinate q, the RWA terms with equal num-
bers of ay and a will contribute to the phase space crystal.

In the solid-state band theory, the spectrum ultimately
becomes continuous due to the large number of atoms. For
the phase space crystal, a continuous quasienergy spectrum
would emerge in the limit of large n. Compared to con-
ventional artificial materials, such as photonic crystals, the
energy band structure of phase space crystals can be
changed in situ by tuning the driving field’s parameters.
By changing the coupling power n, one can even change
the lattice constant � ¼ 2�=n of the phase space crystal.
The new symmetry introduces the quasinumber space. The
concept of quasinumber space may bring a new perspective
to modify properties of materials.
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