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We demonstrate how the spin-1=2 XYZ quantum Heisenberg model can be realized with bosonic atoms

loaded in the p band of an optical lattice in the Mott regime. The combination of Bose statistics and the

symmetry of the p-orbital wave functions leads to a nonintegrable Heisenberg model with antiferro-

magnetic couplings. Moreover, the sign and relative strength of the couplings characterizing the model are

shown to be experimentally tunable. We display the rich phase diagram in the one-dimensional case and

discuss finite size effects relevant for trapped systems. Finally, experimental issues related to preparation,

manipulation, detection, and imperfections are considered.
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Introduction.—Powerful tools developed recently to
unravel the physics of many-body quantum systems offer
an exciting new platform for understanding quantum mag-
netism. It is now possible to engineer different systems in
the laboratory that mimic the physics of theoretically
challenging spin models [1], thereby performing ‘‘quan-
tum simulations’’ [2]. Along these lines, systems of
trapped ions and of polar molecules are promising candi-
dates. Trapped ions, for example, have already been
employed to simulate both small [3] and large [4] numbers
of spins. In these setups, however, sustaining control over
the parameters becomes very difficult as the system size
increases. Furthermore, due to trapping potentials realiza-
tions are limited to chains with up to 25 spins. It is also very
difficult to construct paradigmatic spin models with short-
range interactions using systems of trapped ions. Similar
limitations appear when using polar molecules, where the
effective spin interactions [5,6] are obtained from the
intrinsic dipole-dipole interactions. Because of the charac-
ter of the dipolar interaction, these systems give rise to
emergent models that are inherently long range, and the
resulting couplings usually feature spatial anisotropies.

Short-range spin models can instead be realized with
cold atoms in optical lattices [1]. A bosonic system in a
tilted lattice has recently been used to simulate the phase
transition in a 1D Ising model [7]. Fermionic atoms were
employed to study dynamical properties of quantum mag-
netism for spin systems [8,9]. This idea, first introduced in
Ref. [10], has also been applied to other configurations, and
simulation of different types of spin models have been
proposed [11]. However, due to the character of the atomic
s-wave scattering among the different Zeeman levels, such
mappings usually yield effective spin models supporting
continuous symmetries like the XXZ model. But as the
main goal of a quantum simulator is to realize systems that
cannot be tackled via analytical and/or numerical

approaches, it is important to explore alternative scenarios
that yield low symmetry spin models with anisotropic
couplings and external fields.
In this Letter we propose such a scenario by demonstrat-

ing that bosonic atoms in the first excited bands (p band) of
a 2D optical lattice can realize the spin-1=2 XYZ quantum
Heisenberg model in an external field. Systems of cold
atoms in excited bands feature an additional orbital degree
of freedom [12] that gives rise to novel physical properties
[13], which include supersolids [14] and other types of
novel phases [15], unconventional condensation [16], and
frustration [17]. A condensate with a complex order pa-
rameter was also recently observed experimentally [18,19].
The dynamics of bosons in the p band include anisotropic
tunneling and orbital changing interactions, where two
atoms in one orbital state scatter into two atoms in a
different orbital state. This is the key mechanism leading
to the anisotropy of the effective spin model obtained here:
These processes reduce the continuous Uð1Þ symmetry
characteristic of the XXZ model, which would effectively
describe fermions in the p band [20], into a set of discrete
Z2 symmetries characteristic of the XYZ model. In
addition, due to the anomalous p-band dispersions the
couplings of the resulting spin model can favor antiferro-
magnetic (AFM) order even in the bosonic case.
We also demonstrate how further control of both the

strength and sign of the couplings is obtained by external
driving. This means that one can realize a whole class of
anisotropic XYZ models with ferromagnetic (FM) and/or
antiferromagnetic correlations. To illustrate the rich phys-
ics that can be explored with this system, we discuss the
phase diagram of the 1D XYZ chain in an external field.
This case exhibits ferromagnetic as well as antiferromag-
netic phases, a magnetized or polarized phase (PP), a spin-
flop (SF), and a floating phase (FP) [21]. Finite size effects
relevant for the trapped case are examined via exact

PRL 111, 205302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 NOVEMBER 2013

0031-9007=13=111(20)=205302(5) 205302-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.205302


diagonalization. This reveals the appearance of a devil’s
staircase manifested in the form of spin density waves.
Finally, we discuss how to experimentally probe and ma-
nipulate the spin degrees of freedom.

p-orbital Bose system.—We consider bosonic atoms of
mass m in a 2D optical lattice of the form VðrÞ ¼
Vxsin

2ðkxxÞ þ Vysin
2ðkyyÞ. Assuming that all atoms are

in the first excited bands, the tight-binding Hamiltonian is

Ĥ ¼ �X

ij;�

t�ijâ
y
i;�âj;� þX

i;�

�
U��

2
n̂i;�ðn̂i;� � 1Þ þ Ep

�n̂i;�

�

þ X

i;���0

�
U��0 n̂i;�n̂i;�0 þU��0

2
âyi;�â

y
i;�âi;�0 âi;�0

�
: (1)

Here âyi;� creates a bosonic particle in the orbital � ¼ px,

py at site i, n̂i;� ¼ âyi;�âi;�, and the sum is over nearest

neighbors i; j. The tunneling matrix elements are given by
t�ij¼�R

drw�
i ðrÞ�½�@

2r2=2mþVðrÞ�w�
j ðrÞ, where w�

i ðrÞ
is the Wannier function of orbital � at site i. Note that t�ij is

anisotropic. For instance, a boson in the px orbital has a
much larger tunneling rate in the x direction than in the y

direction. The coupling constants are given by U��0 ¼
U0

R
drjw�

i ðrÞj2jw�0
i ðrÞj2, with U0 > 0 the on-site interac-

tion strength determined by the scattering length. The last
term in (1) is the orbital changing term describing the
flipping of a pair of atoms from the state �0 to the state
�. Note that this term is absent in the case of fermionic
atoms.

Effective spin Hamiltonian.—We are interested in the
physics of the Mott insulator phase with unit filling in
the strongly repulsive limit jt�ijj2 � U��0 . Projecting onto

the Mott space of singly occupied sites with the operator

P̂, the Schrödinger equation becomes ĤMottP̂jc i ¼
EP̂jc i, with ĤMott ¼ �P̂ ĤðĤQ � EÞ�1Ĥ P̂ . Here Q̂ ¼
1� P̂ and ĤQ ¼ Q̂ Ĥ Q̂ [22]. SinceE� t2=U, we can take

ðĤQ � EÞ�1 ¼ Ĥ�1
Q .

The space of doubly occupied states of a given site

j is three dimensional and spanned by jpxpxi ¼
2�1=2âyjxâ

y
jxj0i, jpypyi ¼ 2�1=2âyjyâ

y
jyj0i, and jpxpyi ¼

âyjxâ
y
jyj0i. In this space, it is straightforward to find ĤQ

from (1), and subsequent inversion yields

Ĥ�1
Q ¼

Uyy=U
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2 0
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2 0
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0
BB@
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CCA; (2)

with U2 ¼ UxxUyy �U2
xy. In particular, the off-diagonal

terms in Ĥ�1
Q derive from the orbital changing term. Using

(2) we can now calculate all possible matrix elements of

ĤMott in the Mott space,

ĤMott ¼ �X

ij;�

�2jt�ijj2U �� ��

U2
n̂i;�n̂j;� þ jt�ijj2

2Uxy

n̂i;�n̂j; ��

� 2txijt
y
jiUxy

U2
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where �x ¼ y and �y ¼ x. By further employing the

Schwinger angular momentum representation, Ŝzi ¼
1
2 ðâyxiâxi � âyyiâyiÞ, Ŝþi ¼ Ŝxi þ iŜyi ¼ âyxiâyi, and Ŝ�i ¼
Ŝxi � iŜyi ¼ âyyiâxi, together with the constraint âyxiâxi þ
âyyiâyi ¼ 1, we can (ignoring irrelevant constants) map

(3) onto a spin-1=2 XYZ model in an external field [23]:

ĤXYZ ¼ X

hiji
Jij½ð1þ �ÞŜxi Ŝxj þ ð1� �ÞŜyi Ŝyj�

þX

hiji
�ijŜ

z
i Ŝ

z
j þ h

X

i

Ŝzi : (4)

Here, hi; ji means summing over each nearest neighbor
pair i, j only once. The couplings are given by Jij ¼
�2txijt

y
ji=Uxy, � ¼ �4U2

xy=U
2, and �ij ¼ �4ðjtxijj2Uyy þ

jtyijj2UxxÞ=U2 þ ðjtxijj2 þ jtyijj2Þ=Uxy. The magnetic field is

h ¼ 4
P

hijiðjtyijj2Uxx � jtxijj2UyyÞ=U2 þ Epx
� Epy

, where

E� is the on-site energy of the orbital �.
Equation (4) is a main result of this Letter. It demon-

strates how p-orbital bosons in a 2D optical lattice can
realize the XYZ quantum spin-1=2 Heisenberg model.
Several interesting facts should be noted. First, txijt

y
ji < 0

due to the symmetry of the p orbitals [12] and therefore
Jij > 0. Furthermore, since j�j< 1, we have antiferromag-

netic instead of the usual ferromagnetic couplings for
bosons. Also, we obtain the XYZ model when � � 0. The
presence of � can be traced to the orbital changing term in

Eq. (1), which reduces the continuousUð1Þ symmetry of Ŝx

and Ŝy to a set of Z2 symmetries. The Z2 symmetries reflect
the ‘‘parity’’ conservation in the original bosonic picture
which classifies the many-body states according to total
even or odd number of atoms in the px and py orbitals.

Since the orbital changing term is absent for fermions, the
XYZ model with anisotropic coupling is a peculiar feature
of bosons in the p band. We emphasize that the above
derivation makes no assumptions regarding the geometry
of the 2D lattice; i.e., it can be square, hexagonal, etc.
1D XYZ phase diagram.—To illustrate the rich physics

of the XYZmodel, we now focus on the case of a 1D lattice
where quantum fluctuations are especially pronounced.
Note that by increasing both the lattice amplitude and
spacing in the y direction keeping Vyk

2
y ’ Vxk

2
x, one can

exponentially suppress tunneling in the y direction to
obtain an effective 1D model, while the px and py orbitals

are still quasidegenerate [24]. In the 1D setting, we will
drop the ‘‘direction’’ subscript ij on the coupling constants.
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For 1D, the importance of the orbital changing term can
be further illuminated by employing the Jordan-Wigner

transformation Ŝ�i ¼ e
i�
P

i�1
j¼1

ĉyj ĉj ĉi for fermionic operators
ĉi. The result is the fermionic Hamiltonian

ĤK=J ¼ X

n

�
ðĉyn ĉnþ1 þ ĉynþ1ĉnÞ þ �ðĉyn ĉynþ1 þ ĉnþ1ĉnÞ

þ �

J

�
ĉyn ĉn þ 1

2

��
ĉynþ1ĉnþ1 � 1

2

�

þ h

J

�
ĉyn ĉn � 1

2

��
: (5)

We see that � � 0 leads to a pairing term that typically
opens a gap in the energy spectrum. Incidentally, the limit
of� ! 0 in Eq. (5) is a realization of the Kitaev chain [25].

The schematic phase diagram is illustrated in Fig. 1(a).
At zero field, the XYZ model is integrable [26]. For large
positive values of �=J the system is AFM in the z direc-
tion. Small values of �=J are characterized by Néel order-
ing in the y direction and the system is in the so-called
spin-flop phase. The h ¼ 0 line for large negative values of
�=J is characterized by a FM phase in the z direction, and
for all the cases, the limit of large external field displays a
magnetized phase, where the spins align along the orienta-
tion of the field in the z direction. These three phases also
characterize the phase diagram of the XXZ model in a
longitudinal field [27]. However, for nonzero anisotropy �,
a gapless floating phase emerges between the SF and the
AFM phases which is characterized by power-law decay of
the correlations [21,28,29]. The transition from the AFM to
the FP is of the commensurate-incommensurate (C-IC)

type whereas the transition between the FP and SF phases
is of the Berezinsky-Kosterlitz-Thouless (BKT) type. For
�<�ð1þ j�jÞ there is a first order transition at h ¼ 0
between the two polarized phases. Finally, there is an Ising
transition between the PP and the SF phases.
The experimental realization of the Heisenberg model

will inevitably involve finite size effects due to the har-
monic trapping potential. Within the local density approxi-
mation, the trap renormalizes the couplings so that they
become spatially dependent [30], but this effect can be
negligible if the orbitals are small compared to the length
scale of the trap. In the regime of strong repulsion, the main
effect of the trap is instead that it gives rise to ‘‘wedding
cake’’ structures with Mott regions of integer filling. This
effect was observed in the lowest band Bose-Hubbard
model [1] and predicted theoretically to occur for antifer-
romagnetic systems [31]. To examine finite size effects, we
have performed exact diagonalization in a chain with 18
spins with open boundary conditions. Figure 1(b) displays
the resulting finite size ‘‘phase diagram.’’ The colors cor-

respond to different values of the total magnetizationM ¼P
ihŜzi i of the ground state. While the PP phase and the

AFM phase are both clearly visible, the numerical results
reveal a steplike structure of the magnetization in between
the two phases. We attribute these steps in M to a devil’s
staircase structure of spin-density waves (SDW). As we see
from Fig. 1(b), it is only possible to give a numerical result
for the PP-SF Ising transition. In particular, the C-IC and
Berezinsky-Kosterlitz-Thouless transitions are overshad-
owed by the transitions between SDW. In the thermody-
namic limit the staircase becomes complete and the changes
inM become smooth. One then recovers the phase diagram
of Fig. 1(a). These transitions, between different SDW, are
more pronounced for moderate system sizes. For a typical
experimental system with �50 sites, for example, we esti-
mate�15 different SDW between the AFM and PP phases.
Measurements and manipulations.—While time-of-

flight measurements can reveal some of the phases [19],
single-site addressing techniques [32] will be much more
powerful when extracting correlation functions. To address
single orbital states or even perform spin rotations, one
may borrow techniques developed for trapped ions [33].
Making use of the symmetries of the px and py orbitals,

stimulated Raman transitions can drive both sideband and
carrier transitions for the chosen orbitals in the Lamb-
Dicke regime. These transitions can be made so short
that the system is essentially frozen during the operation.
Driving sideband transitions in this way, spin rotations may
be implemented. For example, a spin rotation around
x is achieved by driving the red sidebands for both orbitals
[23]. As a result, the two p orbitals are coupled to the s
orbital in a V configuration, and in the large detuned
case an adiabatic elimination of the s band gives an
effective coupling between the px and py orbitals [34].

Thus, this scheme realizes an effective spin Hamiltonian
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FIG. 1 (color online). (a) Schematic phase diagram of the XYZ
chain. (b) Finite size ‘‘phase diagram’’ obtained by exact diag-
onalization of 18 spins. The finite size phase diagram comprises
an incomplete devil’s staircase of SDW between the PP and
AFM phases. The anisotropy parameter is � ¼ 0:2 in (b).
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ĤðiÞ
x ¼ ð�x�y=�psÞŜxi , with �� the effective Rabi fre-

quencies and �ps the detuning. Alternatively, Stark shift-

ing one of the p orbitals results in a rotation around z. Since
the spin operators do not commute, any rotation can be
realized from these two operations. Performing fluores-
cence on single orbital states by driving the carrier tran-

sition acts as measuring Ŝzi . This combined with the
abovementioned rotations makes it possible to measure
the spin at any site in any direction [23,33].

Tuning couplings.—For a square optical lattice, we have
Uxx ¼ Uyy. Moreover, in the harmonic approximation

Uxy ¼ Uxx=3, from which it follows that �< 0 and � ¼
�1=2. This gives ferromagnetic couplings for the z com-
ponent of neighboring spins, while the interactions
between x and between the y components have antiferro-
magnetic couplings. We now show how the relative
strength and sign of the different couplings can be con-
trolled by squeezing one of the orbital states. Such squeez-
ing can be accomplished by again driving the carrier
transition of either of the two orbitals dispersively with a
spatially dependent field [23]. The shape of the drive can
be chosen such that the resulting Stark shift is weaker in the
center of the sites, resulting in a narrowing of the orbital.
To be specific, assume that the ratio � of the harmonic
length scales of the px and py orbitals in the y direction is

tuned. A straightforward calculation using harmonic oscil-

lator functions yields ��Uxx=Uxy¼2�3=23ð1þ�2Þ3=2=�
and � � Uyy=Uxy ¼ 2�3=23ð1þ �2Þ3=2. The coupling

constants now depend on � as �=J ¼ 2txðtyÞ�1�=ð���
1Þ þ 2tyðtxÞ�1�=ð��� 1Þ � ðtx=ty þ ty=txÞ=2 and � ¼
�4=ð��� 1Þ. The inset in Fig. 2 displays the three cou-
pling parameters as a function of � for jtx=tyj ¼ 0:1. We
see that the relative size and even the sign of the couplings

can be tuned by varying �. In particular, while Ŝy always

has AFM couplings, couplings can be made both FM or

AFM for Ŝx and Ŝz. In the main part of Fig. 2, we sketch the
different accessible models as a function of ty=tx and �.
This demonstrates that this model can be used to realize a
whole class of XYZ spin chains.

Experimental realization.—In Ref. [18], the experimen-
tal realization of p-orbital bosons in an effective 1D optical
lattice with a lifetime of several milliseconds was reported.
With an average number of approximately two atoms per
site, the atoms could tunnel hundreds of times in the p band
before decaying. Since the main decay mechanism stems
from atom collisions [12,35], an increase of up to a factor of
5 in the lifetime is expected when there is only one
atom per site [18]. Typical values of the couplings can be
estimated from the overlap integrals of neighboringWannier
functions. Considering 87Rb atoms, �lat ¼ 843 nm and
Vx¼30ER, Vy¼50ER, and Vz ¼ 60ER, we obtain J=ER �
0:01 and the characteristic tunneling time � ¼ @=J � 5 ms.
This corresponds to a few dozen of times smaller than the
expected lifetimes [18], which would allow experimental

explorations of our results since relaxation typically occurs
on a scale less than 10 tunneling times [36]. In addition, as
pointed out in [23], it is possible to increase the lifetimes
further with the use of external driving.
Our computations are done at zero temperature and we

expect the spin correlations discussed here to emerge at
temperatures kBT & J � t2=U [10]. We can estimate the
required entropy [37] by equating the critical temperature
Tc to the gap between the ground andfirst excited states in the
antiferromagnetic phase. Using the energy spectrum
obtained fromexact diagonalization,S ¼ ðE� FÞ=Tc yields
the entropy per particle S=N ¼ 0:06kB. Experimentally one
has already achieved S=N ¼ 0:05kB [38], which suggests
that our results are within experimental reach.
Amajor experimental challenge is to achieve a unit filling

of the p band. This could be achieved by having an excess
number of atoms in the p band and then adiabatically
opening up the trap such that the unit filling is reached. A
minority of sites will still be populated, however, by immo-
bile s-orbital atoms. Since the interaction energy between
s- and p-orbital atoms is higher than between two p-orbital
atoms, processes involving s-orbital atoms will be sup-
pressed. The presence of atoms in the s band corresponds,
therefore, to introducing static disorder in the system [23].
Thismay affect correlations [39], but the qualitative physics
will remain unchanged for concentrations close to a unit
filling. A more detailed study of this interesting effect is
beyond the scope of the present work.
Conclusions.—We showed that the Mott regime of unit

filling of bosonic atoms in the first excited bands of a 2D
optical lattice realizes the spin-1=2 XYZ quantum
Heisenberg model. We then illustrated the rich physics of
this model by examining the phase diagram of the 1D case.
Finite size effects relevant to the trapped systems were
discussed in detail. We proposed a method to control the
strength and relative size of the spin couplings, thereby
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FIG. 2 (color online). Different types of models are achieved
by varying the relative tunneling strength and the relative orbital
squeezing. The three different parameter regions are (I)
antiferromagnetic couplings in all spin components with �>
Jð1þ j�jÞ, (II) ferromagnetic or antiferromagnetic couplings in
the z component and antiferromagnetic in the y component
with Jð1þ j�jÞ> j�j, and (III) same as in (II) but with j�j>
Jð1þ j�jÞ. The inset shows one example of the spin parameters
Jxx ¼ ð1þ �Þ, Jyy ¼ ð1� �Þ, and Jzz ¼ �=J for ty=tx ¼ �0:1.
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demonstrating how one can realize a whole class of XYZ
models. We finally discussed experimental issues related to
the realization of this model. We end by noting that recent
experiments reported a �99% loading fidelity of bosons
into the d band [40], which indeed opens possibilities to
probe rich physics beyond spin-1=2 chains.
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Jürgensen, D.-S. Lühmann, C. Becker, and K. Sengstock,
Nat. Phys. 8, 813 (2012);D.Greif, T.Uehlinger, G. Jotzu, L.
Tarruell, and T. Esslinger, Science 340, 1307 (2013).

[10] L.-M. Duan, E. Demler, and M.D. Lukin, Phys. Rev. Lett.
91, 090402 (2003).

[11] E. Altman, W. Hofstetter, E. Demler, and M. Lukin, New
J. Phys. 5, 113 (2003); J. Radic, A. DiCiolo, K. Sun, and V.
Galitski, Phys. Rev. Lett. 109, 085303 (2012).

[12] A. Isacsson and S.M. Girvin, Phys. Rev. A 72, 053604
(2005).

[13] M. Lewenstein and W.V. Liu, Nat. Phys. 7, 101 (2011).
[14] V.W. Scarola and S. DasSarma, Phys. Rev. Lett. 95,

033003 (2005).
[15] C. Xu and M. P. A. Fisher, Phys. Rev. B 75, 104428

(2007); J. Larson, A. Collin, and J.-P. Martikainen, Phys.
Rev. A 79, 033603 (2009); A. Collin, J. Larson, and J.-P.
Martikainen, Phys. Rev. A 81, 023605 (2010).

[16] W.V. Liu and C. Wu, Phys. Rev. A 74, 013607 (2006); C.
Wu, Mod. Phys. Lett. B 23, 1 (2009).

[17] Z. Cai, Y. Wang, and C. Wu, Phys. Rev. B 86, 060517(R)
(2012).

[18] T. Müller, S. Fölling, A. Widera, and I. Bloch, Phys. Rev.
Lett. 99, 200405 (2007).
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