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Neoclassical bootstrap current is expected to provide a significant fraction of the equilibrium plasma

current in tokamak reactors. Here we report a novel mechanism through which a bootstrap current may be

driven even in a collisionless plasma. In analogy with the neoclassical mechanism, in which the collisional

equilibrium established between trapped and passing electrons produces a steady state current, we show

that resonant scattering of electrons by drift wave microturbulence provides an additional means of

determining the equilibrium between trapped and passing electrons and thus driving a bootstrap current.

Employing a linearized Fokker-Planck collision operator, the plasma current in the presence of both

collisions and resonant electron scattering is computed, allowing for the relative strength of these two

mechanisms to be quantified as a function of collisionality and fluctuation amplitude.
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Neoclassical and turbulent transport can have complex
interactions in toroidal confinement devices. For example,
turbulent fluctuations can modify neoclassical transport
coefficients [1–3]. Here we show that turbulence can sig-
nificantly modify the bootstrap current, which is conven-
tionally attributed to neoclassical transport [4–7]. We find
that the change in bootstrap current is particularly strong
during transient bursts of turbulent transport where fluc-
tuation levels can obtain values a few times greater than
that estimated from mixing length theory for a steady-state
ITER-like tokamak. This suggests that bursty turbulent
transport can change the plasma equilibrium and its micro-
and macrostability not only through profile relaxation of
density and temperature, but also through direct modifica-
tion of the axisymmetric plasma current distribution via
turbulence-induced electron detrapping.

The physical origin of the bootstrap current [8–10] can
be understood by a consideration of the guiding center
orbits of electrons in a strongly magnetized toroidal con-
finement device. Namely, in a toroidal plasma, the motion
of trapped electrons in the presence of density or tempera-
ture gradients results in an asymmetry of comoving versus
countermoving trapped electrons. Within the conventional
bootstrap current calculation, this trapped electron asym-
metry is subsequently translated into a passing electron
current via the collisional detrapping of electrons. Within
this Letter, we describe the means through which an equi-
librium between trapped and passing electrons may be
established even in the absence of collisions. This obser-
vation can be motivated by considering the form of the
quasilinear diffusion equation, which may be written as
[11,12]
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Here, D is a 3� 3 matrix, and the phase space coordinates
for a small inverse aspect ratio plasma may be taken to be

Z ¼ ðv; �; rÞ, where v is the magnitude of the velocity,
� � v2

?B0=ðv2BÞ is the pitch angle, and r is the radius.

Considering a plot of the location of the trapped-passing
boundary as a function of � and r (see Fig. 1), it is clear that
wave-particle interactions provide two distinct mecha-
nisms for detrapping electrons: (i) pitch-angle scattering
at a fixed radial location, (ii) radial transport at a fixed
location in velocity space. The former process is closely
analogous to the familiar collisional detrapping mecha-
nism, except with wave-particle resonances providing the
scattering mechanism. With regard to the latter process, for
a radially varying equilibrium magnetic field, the location
of the trapped-passing boundary will also vary as the
electron is transported radially, thus allowing for electrons
to be trapped or detrapped via radial scattering. This latter
process is likely to be particularly robust, since a broad
range of tokamak instabilities introduce substantial
amounts of radial transport.
In the following, an explicit form of the quasilinear

diffusion equation will be derived for the important case
of electrostatic collisionless trapped electron modes [13].
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FIG. 1. Trapped particle domain as a function of pitch angle
and radius. Detrapping may occur either by pitch-angle scatter-
ing or radial transport.
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Here, it is shown that the magnetic drift resonance provides
an efficient means of detrapping electrons, and thus estab-
lishing a collisionless equilibrium between the trapped and
passing electron population. The relative efficiency of this
collisionless mechanism is subsequently quantified by
employing a linearized Fokker-Planck collision operator
[14] to provide a description of the steady state electron
current in the presence of both Coulomb collisions and
resonant electron scattering by collisionless trapped elec-
tron modes fluctuations.

The collisionless mechanism for driving bootstrap cur-
rent by wave-particle interaction can be illustrated by
solving the gyrokinetic equation [15]
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To disentangle mean and fluctuating components of the
plasma distribution function, we adopt the standard sepa-

ration Feðz; tÞ ¼ FeðzÞ þ �Feðz; tÞ, where z � ðx; vk; �Þ,
� � v2

?=ð2BÞ, and we will refer to the time independent,

axisymmetric, term as the mean component, whereas the
second contribution describes fluctuations associated with
the background microturbulence. An expression for the
mean field can then be written as

ðvkb̂þ vdeÞ � @Fe
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¼ CeðFeÞ þ Cturb

e ð�FeÞ; (3)

where we have neglected the parallel inductive electric
field, made the variable change ðx; vk; �Þ ! ðx; v2; �Þ,
and the magnetic drift is given by vde � �½�Bðb̂�
r lnBÞ þ v2

kðr � b̂Þ�=j!cej, with the electron cyclotron

frequency !ce � eB=ðmecÞ. Here the turbulent collision
operator is defined as
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with the radial and velocity space fluxes given by
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For simplicity, we have assumed the limit of tightly local-
ized radial eigenmodes [16] such that kk � 0. The mecha-

nism described here can thus be distinguished from that
described by Wang et al. [17] (see also Itoh and Itoh [18]),
which requires hkki �

P
kkkj��kj2 � 0, and Hinton et al.

[2], which arose primarily due to magnetic flutter.
Expanding the mean component of the distribution func-
tion in the ratio of the poloidal Larmor radius over an
equilibrium scale length, i.e., Fe ¼ Fe0 þ Fe1 þ � � � ,
yields to lowest nontrivial order
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where c is the poloidal flux function. Our primary focus is
the reactor-relevant regime where both the collisional and
resonant electron scattering rates are slow compared to the
bounce time of a trapped electron. This allows the right-
hand side of Eq. (6) to be treated as a perturbation.

Introducing the additional expansion Fe1 ¼ Fð0Þ
e1 þ Fð1Þ

e1 þ
� � � , the lowest order solution is given by [19]
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whereHe ¼ Heðc ; v2; �; �Þ is an integration constant and
� � vk=jvkj. The integration constant He will be deter-

mined by the next order equation

B � rFð1Þ
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e1 Þ�: (8)

For trapped electrons, it can be straightforwardly demon-
strated that the odd component of He vanishes identically
[6]. For passing electrons, a formal expression for Heðc Þ
may be obtained by flux surface averaging Eq. (8), yielding�
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Equation (9) provides a constraint equation for the mean
electron distribution incorporating both Coulomb colli-
sions and resonant scattering of electrons by drift wave
turbulence. This constraint equation, in conjunction with
the boundary condition Hodd

e ¼ 0 at the trapped-passing
boundary, will be used in the following to describe the
mean electron current.
The strength of the resonant scattering contribution may

be estimated by evaluating the turbulent collision operator
[Eq. (4)] from quasilinear theory. The linearized drift
kinetic equation for electrons can be written as�
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(10)

where �! is a small resonance broadening term.
Collisionless trapped electron modes satisfy the ordering
!b 	 ð!;!deÞ 	 �eff , such that the collision operator
may be neglected in Eq. (10). Here !b is the bounce
frequency of a thermal electron, !de the electron magnetic
drift frequency, �eff � �e=" and " � r=R0. Equation (10)
may be inverted by utilizing the scale separation
ð!;!deÞ 
 !b, which allows for an approximate analytic
inversion [20]. For the bootstrap current calculation, while
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the scale separation ð!;!deÞ 
 !b should be satisfied
throughout the majority of phase space, it is expected to
break down near the trapped-passing boundary where
!b ! 0. To overcome this difficulty with the approximate
analytic inversion, we employ a direct numerical inversion
when computing the quasilinear fluxes. After performing
the variable change ðx; v2; �Þ ! ðx; v; �Þ, the turbulent
collision operator may be written as

hJCturb
e i ¼ �1

V 0
@

@c
V 0h�xi � @
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h�vi � @

@�
h��i; (11)

where, after inverting the drift kinetic equation, the phase
space fluxes can be shown to have the form
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and the Jacobian is given by J ¼ 2�"�ðv=
vtheÞ3�2ðB=B0Þðvthe=vkÞ. Here � is a pitch-angle variable

defined by � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1� �ð1� "Þ�=ð2"�Þp
, � � 2�B0=v

2,
and the spatial and velocity derivatives transform as
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The variable � has a range given by ð0;1Þ, where the
trapped-passing boundary corresponds to � ¼ 1.
Electrons with � > 1 are passing, whereas those with 0<
�< 1 are trapped. The contributions to the flux given by
S�, Sv, and Sx are proportional to the thermodynamic
forces and provide the drive for Hodd

e . A distinctive char-
acteristic of the turbulent collision operator is that when
performing the change of variables ðv2; �Þ ! ðv; �Þ, the
spatial derivative at fixed ð�; v2Þ is linked to both spatial
and pitch-angle gradients. This has the important conse-
quence that electrons may be detrapped via radial transport
at fixed locations in velocity space, in addition to the more
familiar pitch-angle scattering mechanism. As an example
of the phase space structure of the quasilinear transport
coefficients, the pitch-angle diffusivity is plotted in Fig. 2.
The pitch-angle diffusivity can be seen to be maximal near
the trapped-passing boundary, suggesting that resonant
scattering provides a robust means of detrapping electrons.

Before solving for the plasma current in the presence of
both Coulomb collisions and resonant electron scattering,
it will be useful to consider the collisionless limit ��

e ! 0,

where the dimensionless collisionality is defined by ��
e �

ðqR0=
ffiffiffi
2

p
vtheÞ"�3=2	�1

ee and vthe � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
. Our motiva-

tion for considering this idealized limit is that it provides
an unambiguous demonstration that resonant electron scat-
tering may drive a mean electron current in the absence of
collisions. Subsequently, the case of finite collisionality

will be considered in order to quantify the impact of
resonant electron scattering on the plasma current as a
function of ��

e and fluctuation amplitude.
The solution of the constraint equation (9) in the colli-

sionless limit is shown in Fig. 3, with the resulting current
profile shown by the black curve in Fig. 4. Here, we have
assumed the magnetic geometry to be described by
unshifted circular flux surfaces with a constant flux func-
tion Iðc Þ ¼ B0R0, H

odd
e is assumed to vanish as v ! 1 as

well as at v ¼ 0, and we have also enforced @He=@� ! 0
as � ! 1. For simplicity, we have assumed a no-slip
boundary condition in the radial direction. The density
and temperature profiles were assumed to be of the form

�
neðrÞ
neðaÞ ;

TeðrÞ
TeðaÞ

�
¼ 1� e�L þ eL cosð��r=LÞ��ð�r�LÞ�;

where L � ðrmax � rminÞ=�Lmax
n;Te

, �r � ðr� rminÞ=�Lmax
n;Te

and Lmax
n;Te

refers to either the maximum density or
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FIG. 2 (color online). Plot of the diffusivityaD��=v
the at r=a ¼

0:55 in the passing particle region for the parameters
� ¼ 1=250,
"max ¼ 0:32, Lmax

n =a ¼ 1:0, Lmax
Te =a ¼ 0:5, q0 ¼ 3:0, Te ¼ Ti,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi=me

p � 60, and a�!=cs ¼ 0:2. We assumed five modes to
be present with wave numbers between k�
i ¼ 0:25–1:0, where
the fluctuation spectrum is defined by Eq. (12) below.
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parameters as Fig. 2.
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temperature gradient. The profile of the safety factor will

also be taken to have the form qðrÞ ¼ q0ðr=aÞ1=2.
In order to better understand the physical origin of the

electron current discussed above, it will be useful to con-
sider the flux of electrons through the trapped-passing
boundary. A contour plot of this flux is shown in Fig. 5
for the trapped-passing boundary bordering the positive
passing particle region. From Fig. 5, a clear imbalance in
both the rate as well as energy of electron trapping versus
detrapping can be observed. Since we are considering the
odd component of the electron distribution function, this
trend would be reversed for the flux through the trapped-
passing boundary neighboring the negative passing particle
region. This asymmetry between the trapping or detrapping
rate for the positive and negative passing particle regions
will thus lead to a deficit of electrons propagating in the
positive direction, and thus a positive net passing electron
current. At stationarity, this current drive mechanism is
balanced by a radial flux of electron momentum out of the
simulation domain, yielding a peaked electron current
profile such as that shown in Fig. 4.

Turning now to the more general case where both
Coulomb collisions and resonant electron scattering are
included, it is useful to estimate the relative strength of
these two mechanisms. Considering the pitch-angle diffu-
sion coefficient as a representative example, a straightfor-
ward calculation yields
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where we have considered the region near the trapped-
passing boundary where vk=v� ffiffiffi

"
p

and � � 1. From

the above scaling it is evident that while Coulomb colli-
sions are likely to be dominant at low energies, resonant
scattering becomes increasingly important at high

energies. This is of particular importance when noting
that the detrapping flux of electrons is maximal in the
energy range v=vthe ¼ 2–3:5 (see Fig. 5), allowing for a
robust contribution from resonant electron scattering in
this region.
In order to carry out a more comprehensive estimate of

the relative strength of the turbulent and collisional con-
tributions, it will be necessary to introduce an explicit
model of the turbulence spectrum. The turbulence spec-
trum will be modeled following assumptions similar to
those made in the quasilinear transport code QUALIKIZ

[21]. In particular, we will assume a peaked turbulence
spectrum of the form

j��kj2 � expð4k�
i � 8kmax
� 
iÞ; (12a)

for k� < kmax
� , where kmax

� indicates the wave number of the

most unstable mode, and

j��kj2 � expð�4k�
iÞ; (12b)

for k� > kmax
� . With the above assumptions, a plot of the

radial profile of the plasma current for multiple values of
��
e is shown in Fig. 4. We note that in the absence of

turbulence, for ��
e 
 1, the current profile is anticipated

to be insensitive to ��
e according to neoclassical theory.

Here, in contrast, a clear dependence of the current profile
on ��

e is present until the system asymptotes to its colli-
sionless value. Similarly, a plot of the current profile as a
function of turbulence intensity is shown in Fig. 6 for an
ITER relevant collisionality [22,23] of ��

e ¼ 2� 10�3 and

� ¼ 10�3. We note that the resultant current profile is
highly sensitive to the turbulent fluctuation level, making a
precise quantification of the strength of the turbulent
mechanism problematic for ITER plasmas. Further com-
plicating a detailed estimate of the strength of the turbulent
mechanism is the observation that flux driven turbulent
systems are typically characterized by bursty, intermittent
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transport events, such that the fluctuation level may tran-
siently rise well above its ambient level [24–26]. It is,
however, clear that for fluctuation levels in excess of
hje��=Tji � 2:5� 10�3, significant modifications to the
electron current profile are expected.

In summary, we have uncovered an effective means
through which turbulence may impact the mean electron
current. This turbulent effect arises through a direct
modification of the bootstrap current (as opposed to
bootstrap current modification through profile relaxa-
tion), and thus provides a novel channel through which
turbulence may modify plasma macrostability. A particu-
larly subtle physics is how radial transport by turbulence
can provide effective detrapping of the electrons due to
the changing trapped-passing boundary on different flux
surfaces.This provides a robust coupling between anoma-
lous transport and bootstrap current drive. Future work
will focus on understanding how modifications to the
bootstrap current arising from large transient events
will impact the macrodynamics of the magnetohydrody-
namic equilibrium.
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