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We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a

multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors

can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by

using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our

results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well

as for fundamental studies of mesoscopic nonlinear dynamics.
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The diverse phenomena of cavity nonlinear optics [1]
provide a rich basis for fundamental studies of dissipative
nonlinear dynamics [2,3] and for the design of photonic
signal processing devices [4]. Recent experiments exploit-
ing resonant atomic nonlinearities [5–10] and/or nanopho-
tonic cavities [11–17] have demonstrated that such
phenomena can occur at very low (femtojoule-attojoule)
energy scales in prototypical systems, reaching down to the
quantum-physical few-photon regime [18,19] and raising
intriguing prospects for corresponding ultralow power pho-
tonic information technology [20–22]. One of the less-
explored dimensions of this developing scenario is the
surprising complexity of dynamical behaviors, beyond
simple thresholding and bistability, that can be achieved
at low energy scales in cavities incorporating two-level
atoms or comparable solid-state emitters. Complex
dynamical behaviors exhibited by compound optical sys-
tems at relatively high power scales are currently being
studied as a potential basis for computational paradigms
beyond standard binary logic and digital circuit architec-
tures [23]; ultralow power analogs of these behaviors in
cavity nonlinear optics could enable decisive practical
advantages in this approach.

In this Letter, we present experimental data on subcrit-
ical Hopf bifurcation phenomena in an atom-cavity system
and demonstrate a novel device configuration that latches a
logic level and provides rf modulation of the output signal
at the same time. From the perspective of cavity QED, we
newly address an intermediate coupling regime with
critical photon number n0 > 1 and critical atom number
N0 & 10 [24], in which quantum fluctuations are far less
pronounced than in the strong coupling regime [10] yet
coherent nonlinear-optical phenomena still occur at low
energy scales. In order to access the regime of high total

cooperativity required for observation of self-pulsing
(limit cycle) phenomena, we have constructed a multiatom
cavity QED system that combines a magnetic trap with a
moderate-finesse optical cavity, but we speculate that simi-
lar functional behavior potentially could be obtained in
integrated photonic devices incorporating ensembles of
solid-state emitters.
The general paradigm of two-level emitters coupled to

an isolated optical mode can be realized in a wide range of
gas, liquid, and solid-state systems with various types of
optical cavities; our experiment uses a 12-mm Fabry-Perot
resonator in ultrahigh vacuum with an ensemble of laser-
cooled 133Cs atoms placed between the mirrors. We utilize
only the jF ¼ mF ¼ 4i to jF0 ¼ m0

F ¼ 5i transition of the
D2 line at 852 nm where the atoms are well modeled as
two-level systems. The following semiclassical equations
of motion are used to model the system composed of a
cavity and N weakly coupled, noninteracting atoms [25]:

h _ai ¼ �ð�þ i�CÞhai þ
XN

j¼1

gjh�j�i þ EðtÞ; (1a)

h _�j�i ¼ �ð�? þ i�AÞh�j�i þ gjhaih�j
zi; (1b)

h _�j
zi ¼ �2�?ðh�j

zi þ 1Þ � 4gjRefh�j
þihaig: (1c)

Here, a is the intracavity field annihilation operator, �j
�

are the raising or lowering operators for the jth atom, and

�j
z ¼ ½�j

þ;�j��. The rates gj, �?, and � are the atom-

cavity coupling strength for the jth atom, the atomic
polarization decay rate, and the cavity field decay rate,
respectively. �C and �A are the cavity and the atom
detunings, respectively, relative to the drive (laser) fre-
quency, defined as �C ¼ !cav �!las and �A ¼ !atom �
!las, and EðtÞ is the drive field amplitude.
The above Maxwell-Bloch-type equations are derived

from an unconditional Jaynes-Cummings master equation
in the same manner as in Ref. [19] (see also [26]) but with a
slight generalization that incorporates distinct coupling
strengths for the individual atoms. We note that the
‘‘factorization’’ approximations made in the derivation,
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such as ha�j
þi � haih�j

þi, mean that entanglement
between the atoms and the field is ignored. This is justified,
because the coupling strengths for individual atoms are
small, while the combined coupling strength as an en-
semble is still large enough to cause a strong nonlinearity.

By setting the time derivatives in Eqs. (1) to zero, one

can solve for the steady state values of hai, h�j�i, and h�j
zi.

The independent variable E is then expressed as a function
of hai to derive the input-output characteristic of the sys-
tem, and the stability of any (hyperbolic) equilibrium point
can be determined by local linearization. Alternatively,
Eqs. (1) can be numerically integrated to produce sample
trajectories that reflect nonlinear dynamical phenomena
such as limit cycles, chaos [27,28], etc. In this Letter, we
make use of both equilibrium and transient data to assess
the accuracy of our theoretical modeling approach.

In our experiment, the atoms are first collected and
cooled by a magneto-optical trap (MOT) formed on a
gold-coated mirror surface [29]. This surface MOT is
located outside the cavity, 2 cm away from the cavity
axis, where the cooling beams are not obstructed by the
cavity mirrors. The atoms are then further cooled to sub-
Doppler temperature (<10 �K) by polarization-gradient
cooling, optically pumped to the mF ¼ 4 state, and then
loaded in the magnetic trap. The magnetic trap, formed by
currents through copper wires (100–200 �m diameter)
buried underneath the mirror surface, can be moved by
shifting the currents [30] and is used as a conveyer to
transport atoms (up to �106) into the cavity mode. The
number of atoms to be transported is adjusted by changing
the initial MOT size. At the end of the transport process
(200–300 ms), the atoms are released from the magnetic
trap and a large uniform magnetic field is applied in the
direction of the cavity axis, which ensures that the quanti-
zation axes for the atoms and the field are aligned in the
presence of possible stray fields near the surface. The
strong bias field also lifts the degeneracy among
the Zeeman states (Zeeman shift: 2�� 17 MHz). Once
the atoms are in position, the input laser is injected from
one side of the Fabry-Perot cavity and drives the TEM00

mode. The beam that leaks out from the other side of the
cavity serves as the output of the system. Because of the
loss at the cavity mirrors and the existence of two possible
directions for the leakage, we estimate�, the probability of
an intracavity photon making it to the output channel, to be
0.41. The output beam goes through an optical isolator and
is then measured by a homodyne or heterodyne detection
scheme [10]. The maximum atom-cavity coupling
constant, the atomic polarization decay rate, and the
measured cavity field decay rate are ðg0; �?; �Þ=2� ¼
ð0:72; 2:6; 2:3Þ MHz, respectively.

When we apply the model to our experiment, we assume
a large number of atoms distributed uniformly inside the
cavity, so that the values of gj in Eqs. (1) follow directly

from the Gaussian standing-wave profile of the resonant

field mode. Under this assumption, the atomic ensemble is
characterized by a single parameter Neff �

P
N
j¼1ðgj=g0Þ2,

where g0 is the maximum coupling constant at the antinode
center of the cavity. This simplification applies best for a
cavity filled with a homogeneous dispersive or absorptive
medium, a scenario for which extensive studies have
already been performed by using the Maxwell-Bloch equa-
tions [2,31]. The method used here differs from the con-
ventional analytical treatment of the Maxwell-Bloch
equations in that we do not simplify Eqs. (1a)–(1c) by
using the approximation of collective atomic variables,
which assumes, among other things, a low absorption
rate by the medium [2]. We instead keep track of the
evolution of 103 individual atomic variables for better
accuracy, at the cost of increased computational load.
The accuracy of our model in a regime of relatively simple

dynamic behavior is illustrated in Figs. 1(a) and 1(b),
which display the measured equilibrium input-output
response of our atom-cavity system for two different
parameter sets fNeff ;�C;�Ag together with corresponding
steady state solutions of Eqs. (1). For the parameters of
Fig. 1(a) (Neff ¼ 130, �C ¼ �A ¼ 0), a soft thresholding
behavior is observed with a corner near 6 nW input power.
With increased atom number and a detuned probe
(Neff ¼ 470, �C¼�A¼2��8MHz) as in Fig. 1(b), we
observe classic bistability and hysteresis with coexisting

(a) (b)

(c)

FIG. 1 (color). (a) Threshold behavior of the system with
Neff ¼ 130, �C ¼ �A ¼ 0. The black line is the stable steady
state solution derived from the model, and the red (green) line is
a typical data trace from the measurement when the input power
is gradually increased (decreased). (b) Hysteretic behavior with
Neff ¼ 470, �C ¼ �A ¼ 2�� 8 MHz. The color scheme is the
same as (a) except for the new black dotted line that indicates the
unstable steady state solution. (c) Experimental demonstration of
latching using bistable system parameters of (b). With the input
power constant at 14.5 nW, the system maintains its current state.
When a pulse is applied, the system state is set high or low
according to the pulse type (positive or negative).
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stable equilibria from roughly 14 to 15.5 nW input power.
For these measurements the input power was swept slowly
(20 kHz) compared to the dynamical rates of the system
(gj, �?, �) to probe the adiabatic response. Figures 1(a)

and 1(b) each show an individual (but precisely repeatable)
data trace of �50 �s duration that was recorded continu-
ously as the input power was swept up and down.

The theory curves in Figs. 1(a) and 1(b) were computed
by using manually adjusted values of Neff and EðtÞ to
improve agreement with our data, but the fitted values
differ from the independently measured ones by no more
than 10%. Neff is recorded for each experimental run by
measuring the spectral response of the atom-cavity system
by using a very low intensity probe [32] right before and
after the main measurement is made. Comparison of these
two spectral curves also ensures that Neff does not vary
significantly during the measurement period. This proce-
dure and statement of calibration accuracy apply to all
remaining data-theory comparison plots in this Letter as
well. Some discrepancy between the model and the mea-
surement is expected, mainly because the magnetic trap
from which the atoms are released just before the mea-
surement has a similar size to the cavity mode (waist w0 ¼
66 �m), and therefore it is difficult to ensure that the atoms
are truly uniformly distributed when the measurement is
taken. Up to these�10% inaccuracies, however, our model
has proven to be a reliable predictor of the parameter
values at which interesting nonlinear dynamical phe-
nomena should be observed.

After confirming the parameters for simple bistable
input-output behavior in our atom-cavity system, we per-
formed an initial proof-of-principle experiment to demon-
strate an all-optical set-reset latch, which could, for
example, be used as an optical memory bit. Typical data
are shown in Fig. 1(c). Here we envision a device configu-
ration in which the set-reset control beam shares an optical
input channel with the bias power beam (for example, they
could be combined by a beam splitter), so that they inter-
fere constructively or destructively depending on the phase
of the control beam. With this picture in mind, we demon-
strated the set-reset control by superposing positive and
negative pulses onto the laser beam that drives the atom-
cavity system [upper blue trace in Fig. 1(c)]. A positive
pulse switches the response to the upper branch of the
hysteresis curve, where it latches until a negative pulse
resets it back to the lower branch. Our system required
15 nW optical bias power, and the energy used for each
control pulse was roughly 5 nW� 0:2 �s ¼ 1 fJ.

We note that the width of the control pulses used in
our experiment corresponds to the inverse cavity decay
rate ��1. Our switching time is thus longer than in
nanoresonator-based devices, which generally have much
larger � due to their small size. However, in terms of the
switching energy, ours appears to be the minimum energy
demonstrated in an all-optical bistable device [14]. The

switching energy potentially could be lowered even more,
as the energy scale in this experiment is still much larger
than the optical shot noise (quantum fluctuation) limit [10].
With an appropriate choice of external parameters Neff ,

�C, and �A guided by theory, we also probed the atom-
cavity dynamics in an unstable regime and observed
‘‘self-pulsing’’ behavior [2,33] in which the global attrac-
tor is a limit cycle. In Fig. 2(a), we show the systemmaking
transitions between a stable equilibrium point and a limit

(a)

(b)

(c)

(d)

(e)

FIG. 2 (color). Experimental parameters Neff ¼ 2100,
�C=2� ¼ �20 MHz, and �A=2� ¼ 5 MHz are used. (a) The
homodyne signal generated by the output beam as the input
power is slowly swept up and down over the Hopf bifurcation
point p1. The gray bars labeled with b and c indicate the regions
of which the zoomed-in views are displayed in (b) and (c).
(d) Theoretical prediction of the input-output characteristics of
the system. The solid and the dotted black lines represent the
stable and the unstable steady state solutions, respectively. Points
p1 and p2 indicate Hopf bifurcations discussed in the text. The
upper and lower blue lines trace the maximum and the minimum
output power, respectively, of the limit cycles observed in
simulations. (e) On the bottom, the predicted output power of
the system (d) near the subcritical bifurcation point p1 is
compared with the measurement. The measured data are plotted
in red (up sweep) and green (down sweep), by using the
following rules: When no oscillation is detected, the mean output
power is recorded by a cross mark. When the oscillation is
detected, a sinusoid is fitted to the measured signal and its
max or min optical power is denoted by a pair of connected
circles. On the top, we plot the frequencies of both the simulated
and measured limit cycles. The simulation result is plotted in
brown, while the measurements are denoted by red (up sweep)
and green (down sweep) square marks.
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cycle as we sweep the driving input power. When the input
power is large, the power of the output beam oscillates
significantly at a frequency in the range of �21–24 MHz.

Our model predicts a range of input powers
(�1150–1200 nW) for which a stable equilibrium point
and a stable limit cycle coexist. Starting from low input, as
the system is driven past the subcritical Hopf bifurcation
point p1 [�1200 nW, shown in Figs. 2(d) and 2(e)], the
equilibrium point becomes unstable and the system jumps
to the limit cycle. With the system oscillating, the input
power can be lowered back down, and the limit cycle
remains until another bifurcation occurs at a lower input
power (�1150 nW) than p1. As shown in Fig. 2(e), such
hysteresis can be observed clearly in our experiment, and
we find that the measured amplitude and frequency of the
limit cycle closely match predictions. Moreover, combined
measurements of the amplitude and phase quadratures of
the output field confirm that the oscillation of the intra-
cavity field follows a trajectory on the optical phase
plane that is well predicted by theory (see Supplemental
Fig. S1 [34]).

Near the predicted supercritical Hopf bifurcation point
p2 (�2100 nW), on the other hand, the match between our
measurements and theory was not as good. Simulation
predicts that the amplitude of the limit cycle should gradu-
ally converge to zero as the system approaches p2 from
below, at which point a stable equilibrium point defines the
steady state. However, the experimental system continued
to show large-amplitude oscillatory behavior at random
intervals in time even when the input power was far above
the predicted location of p2. Simulations with added tech-
nical noise suggest that such behavior is quite reasonable,
however, as the equilibrium points near p2 are highly
underdamped.

The limit cycle behavior of our system converts the
constant input power into an rf-modulated output power.
We are thus able to demonstrate an elementary physical
mechanism that potentially could be adopted to make self-
contained inline optical oscillators in a nanophotonic
setting, for which the use of conventional optical-oscilla-
tor-type devices such as Q-switched lasers might not be
practical. Our system furthermore is capable of transfer-
ring baseband power modulation to rf modulation of the
output via the correlation between the input power and the
frequency of the limit cycle [Fig. 2(e), upper plot]. This
suggests the possibility of an all-optical baseband-to-rf up-
converter. And finally, hysteresis around the subcritical
Hopf bifurcation can be used to make a latch of rather
unique characteristics, which switches between dc and
modulated signal formats. Optical dc-rf latching devices
may find use in optical communication systems, where
signal up-conversion is a common practice to avoid the
high level of the background noise at low frequencies.
Figure 3 shows a demonstration of such latching
performance. In this context, we note that solid-state

implementations of this type of cavity nonlinear optical
device, for example, using ensembles of quantum dots [35]
or vacancy centers [36], could achieve much higher
values of (g0, �?, �) and therefore much higher limit cycle
frequencies, potentially in the gigahertz range.
We find that the energy stored in the optical dc-rf latch

in Fig. 3 is comparable to that of the elementary latch in
Fig. 1, as in both cases the cavity contains about 500–1000
photons (100–200 attojoule) on average in the high energy
state and much fewer when in the low energy state.
However, the energy required for switching between the
two states was more than an order of magnitude higher for
the dc-rf latch (�30 fJ). This is mostly due to the mis-
match between the input laser frequency and the reso-
nances of the system. In Supplemental Fig. S2 [34], we
show a demonstration of subfemtojoule dc-to-rf switching
operation of the same Hopf bifurcation latch using a sec-
ondary near-resonant beam. We also note that the use of
pulse shaping on the control pulse [37] could potentially
reduce the switching energy of both the elementary and the
dc-rf latch further.
In conclusion, we have demonstrated that a cavity-based

optical device that incorporates a resonant nonlinear
response can exhibit complex dynamic behaviors such as
hysteretic limit cycle formation at femtojoule energy
scales. We have suggested novel signal processing func-
tions based on such phenomena and have demonstrated an

FIG. 3 (color). The system shown in Fig. 2 is used to demon-
strate latching between a stable equilibrium point and a limit
cycle. The spectrogram in the middle is generated by using
0:2-�s segments of the homodyne data, which contain roughly
five oscillation cycles. The 0 dB power level was arbitrarily
chosen. Note that more bandwidth is retained in the homodyne
signal displayed here than in Fig. 1(c), in order to preserve the
limit cycle oscillations. In the bottom frame, we show a zoomed-
in view of the homodyne signal from 3 to 4 �s.
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all-optical configuration that simultaneously latches a logic
level and performs rf modulation of the output power.
Intrinsic self-oscillatory behavior of the atom-cavity sys-
tem, once a subject of active research using thermal gases
and milliwatts of laser power [38–40], here has been
probed with laser-cooled atoms and microwatt power lev-
els. Analogous phenomena could be realized in the context
of nanophotonics, where there is already an emerging
interest in observing and functionalizing self-oscillations
[41–43].
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