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We propose an efficient protocol for braiding Majorana fermions realized as edge states in atomic wire

networks, and demonstrate its robustness against experimentally relevant errors. The braiding of two

Majorana fermions located on one side of two adjacent wires requires only a few local operations on this

side which can be implemented using local site addressing available in current experiments with cold

atoms and molecules. Based on this protocol we provide an experimentally feasible implementation of the

Deutsch-Jozsa algorithm for two qubits in a topologically protected way.

DOI: 10.1103/PhysRevLett.111.203001 PACS numbers: 37.10.Jk, 03.67.Lx, 03.67.Ac

The prediction of particles with anyonic statistics in
topological phases of matter has resulted in the proposal
of decoherence-free topological quantum computation
(TQC) [1–3]. TQC requires the creation of anyonic parti-
cles as well as their controlled interchange, known as
braiding, which is the fundamental building block of topo-
logical quantum gates [4,5]. While the implementation of
these tasks in real physical systems is an outstanding
challenge, the reported observation of anyonic Majorana
fermions (MFs) in hybrid superconductor-semiconductor
nanowire devices [6–8] and the proposals for the manipu-
lation [9–11] of anyonic Majorana fermions in solid state
systems are promising first steps in this direction [11–16].
A complementary and promising approach towards realiz-
ing and coherently controlling MFs are ultracold atoms
confined to one-dimensional (1D) optical lattices coupled
to BCS or molecular atomic reservoirs. The recent realiza-
tion of a quantum gas microscope [17,18] for optical
lattices adds single-site addressing and measurement to
the toolbox of possible atomic operations to create and
detect MFs [19–21].

Building on these experimental advances, we describe in
this Letter an efficient braiding protocol for atomicMFs in a
network of one-dimensional quantum wires (see Fig. 1), in
which MFs appear as edge states (yellow and black spheres
in Fig. 2). The protocol for braiding twoMFs on one side of
two adjacent wires requires only local operations on this
side of the wires and can be completed in four time steps,
during which adiabatic changes on the two edge sites and
the nearby links are performed by local addressing (see
Fig. 2). We demonstrate that our braiding protocol tolerates
relevant experimental imperfections and, therefore, pro-
vides a realistic and practical way to probe the non-
Abelian anyonic statistics of MFs. The braiding protocol
can also be used as an elementary building block for TQC,
which does not require the usage of a universal set of gates
[22,23]. We show this by implementing the Deutsch-Jozsa

algorithm [24] on two qubits via braiding only, demonstrat-
ing that the realization of simple topologically protected
quantum algorithms in atomic setups is within experimental
reach.
Braiding of atomic Majorana fermions.—We consider a

system of single component fermions that are confined
to an array of 1D wires of L sites (see Fig. 1) and that

are governed by a Hamiltonian H ¼ P
nH

ðnÞ. The

Hamiltonian HðnÞ ¼ P
L�1
j¼1 ð�Jayn;jan;jþ1 þ �an;jan;jþ1 þ

H:c:Þ ��
P

na
y
nan realizes a Kitaev chain [25] in the nth

wire. The operators ayn;j and an;j are fermionic creation and

annihilation operators, J > 0 and � 2 R are nearest-
neighbor hopping and pairing amplitudes, and � is a
chemical potential. As demonstrated in Ref. [19], a

Hamiltonian of the form HðnÞ allows for a cold atom
implementation: while the hopping term arises naturally
in an optical lattice setup, the pairing term can be realized
by a Raman induced dissociation of Cooper pairs (or
Feshbach molecules) forming an atomic BCS (or BEC)
reservoir. For an alternative experimental proposal see also

BEC reservoir

...
...

FIG. 1 (color online). Realization of an array of one-
dimensional Kitaev wires in an optical lattice setup: atoms
(red circles) can hop between neighboring sites (blue circles)
with strength J along the individual wires. The pairing term of
strength � can be realized by a Raman induced dissociation of
Cooper pairs (or Feshbach molecules) forming an atomic BCS
reservoir.
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Ref. [20]. Estimates give tens of nanokelvins for the energy
gap separating the Majorana states from the rest of the
spectrum.

The Hamiltonian HðnÞ supports zero energy Majorana

fermions of the form �ðnÞ
LðRÞ ¼

P
jv

LðRÞ
n;j cn;j with (real) coef-

ficients vLðRÞ
n;j , which are localized at the left (right) end of

the nth wire (see Ref. [25]). Here, cn;2j�1 ¼ ayn;j þ an;j and

cn;2j ¼ ð�iÞðayn;j � an;jÞ are Majorana operators fulfilling

fcn;k; cm;lg ¼ 2�kl�mn. For the ‘‘ideal’’ quantum wire

(J ¼ j�j, � ¼ 0), one has vL
n;1 ¼ 1, vR

n;2L ¼ 1 and else

vLðRÞ
n;j ¼ 0. Otherwise, the modes �ðnÞ

LðRÞ decay exponentially
inside the bulk. Each wire has two degenerate ground states
j0ni and j1ni with even and odd parity, respectively, cor-
responding to the presence or absence of the Majorana

fermion fn ¼ �ðnÞ
L � i�ðnÞ

R , i.e., fnj0ni ¼ 0, fyn j0ni¼j1ni.
For the preparation of MFs in the desired parity subspace
see Ref. [21].

Due to the non-Abelian nature of MFs, the interchange
of two Majorana modes �1 and �2 (braiding) gives rise to
the transformation �1 � ��2, �2 � �1. This is equiva-

lent to applying the unitary Ub ¼ e��1�2=4, which is the
key step for realizing a TQC. In the following we present a
braiding protocol for a cold atom implementation of MFs.
To this end, we consider two neighboring wires n and

nþ 1 governed by two ideal Kitaev Hamiltonians HðnÞ

and Hðnþ1Þ. Although the protocol works equally well for
general Kitaev Hamiltonians (see below), the use of ideal
wires allows for a simple analytical treatment because only
six Majorana operators on four sites are involved. If we
label the sites by (w, j), where w ¼ u, l denotes the upper
(n) and lower (nþ 1) wire, respectively, and j ¼ 1; . . . ; L,
then the sites involved are ~s1 ¼ ðu; 1Þ, ~s2 ¼ ðu; 2Þ, ~s3 ¼
ðl; 1Þ, and ~s4 ¼ ðl; 2Þ (see Fig. 2). With the notation cu;j �
cj and cl;j � dj, the Majorana zero modes are �ðuÞ

L ¼ c1,

�ðuÞ
R ¼ c2L, �

ðlÞ
L ¼ d1, and �ðlÞ

R ¼ d2L.

Let us now show how to braid the left Majorana modes

�ðuÞ
L and �ðlÞ

L with only local (adiabatic) changes in the
Hamiltonian on the left edge of the system: switching on

or off (i) the hopping HðhÞ
~si; ~sj

¼ �Jay~sia~sj þ H:c: and (ii) the

pairing HðpÞ
~si;~sj

¼ Ja~sia~sj þ H:c: between the neighboring

sites ~si and ~sj, and (iii) the local potential HðlpÞ
~si

¼
2Vay~sia~si on the site ~si. Note that a combination of (i) and

(ii) allows us to switch on or off the Kitaev coupling

HðKÞ
~si; ~sj

¼ HðhÞ
~si; ~sj

þHðpÞ
~si; ~sj

. Experimentally, these operations

can be achieved by changing the intensity of the laser
field(s) on the corresponding site or link in a controllable
way by using a combination of a high-resolution imaging
system [17,26] and a spatial light modulator (see, e.g.,
Ref. [27]).
Braiding protocol.—The physical process behind the

braiding is the transfer of one fermion from the system
(either from the upper or from the lower wire) into, say, the
lower wire. We characterize the required adiabatic changes
via a time-dependent parameter �t that varies from 0 to
�=2, and perform them in four steps. In describing these
steps, we write down only the Hamiltonian for the four
involved sites (the Hamiltonian for the rest of the wires
remains unchanged) and follow the evolution of the zero
modes, which are always separated by a finite gap from the
rest of the spectrum (see the Supplemental Material [28]).
Step I—We decouple the two very left sites ~s1 and ~s3

from the system by switching off the couplingsHðKÞ
~si; ~sj

on the

links ~s1 � ~s2 and ~s3 � ~s4, and simultaneously couple them
by switching on the hopping on the link ~s1 � ~s3:

HIðtÞ ¼ cos�tðHðKÞ
~s1 ~s2

þHðKÞ
~s3 ~s4

Þ þ sin�tH
ðhÞ
~s1 ~s3

:

Following the evolution of the zero modes (see the
Supplemental Material [28]), we have at the end of this

step that �ðuÞ
L ¼ �d3 and �ðlÞ

L ¼ �c3. Note that the two
decoupled sites ~s1 and ~s3 carry exactly one fermion, which
has been taken out of the system.
Step II—We put now this fermion in the lower wire by

switching on HðKÞ
~s3; ~s4

on the link ~s3 � ~s4, and HðpÞ
~s1; ~s3

on the

link ~s1 � ~s3:

HIIðtÞ ¼ HðhÞ
~s1 ~s3

þ sin�tðHðpÞ
~s1 ~s3

þHðKÞ
~s3 ~s4

Þ:

The zero modes evolve such that at the end �ðuÞ
L ¼ c1 and

�ðlÞ
L ¼ �c3. Note that at this stage the Majorana mode �ðuÞ

L

(�ðlÞ
L ) has already been moved from the upper (lower) to the

lower (upper) wire. However, two additional steps are
needed to recover the original configuration of the wires.
Step III—We move the Majorana mode from the site ~s1

to the site ~s3 by switching on HðlpÞ
~s1

and simultaneously

switching off HðKÞ
~s1 ~s3

on the link ~s1 � ~s3:

J

...

...
J, ∆

J, ∆

...

...
J, ∆

...

...

J, ∆
J, ∆

...

...

c3c
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I
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n

c
2L

d
3d

1
d

2
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d d

... n+1

d
2L

FIG. 2 (color online). Braiding protocol for two perfect quan-
tum wires. The zero-energy Majorana modes that are initially on
the upper (lower) wire are shown as yellow (black) spheres,
while the blue ones correspond to the Majorana operators, which
are coupled into finite-energy fermionic modes. Coupling of
Majorana operators via hopping and pairing (Kitaev coupling)
is indicated by gray solid links, while the coupling via hopping
only is shown as a dashed link.
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HIIIðtÞ ¼ sin�tH
ðlpÞ
~s1

þ cos�tH
ðKÞ
~s1 ~s3

þHðKÞ
~s3 ~s4

:

The evolution of the zero modes results in �ðuÞ
L ¼ d1, while

�ðlÞ
L ¼ �c3 remains fixed.

Step IV—Finally, we switch off HðlpÞ
~s1

and switch on

HðKÞ
~s1 ~s2

:

HIVðtÞ ¼ sin�tH
ðKÞ
~s1 ~s2

þHðKÞ
~s3 ~s4

þ cos�tH
ðlpÞ
~s1

;

so that finally we get the desired braiding �ðuÞ
L � d1 ¼ �ðlÞ

L

and �ðlÞ
L � �c1 ¼ ��ðuÞ

L for the left Majorana modes on
the wires n and nþ 1, which corresponds (up to an unim-

portant phase factor) to the unitary Un ¼ e��
ðuÞ
L �ðlÞ

L =4.

Note that the braiding in the other direction Uy
n , �

ðuÞ
L �

��ðlÞ
L , �ðlÞ

L � �ðuÞ
L , can be achieved by putting the

uncoupled fermion in the upper (instead of the lower)
wire with a simple modification of Steps II–IV.

The braiding results in the change of the correlation
functions of the Majorana operators (see Fig. 2) and thus
changes also the long-range fermionic correlations. This
can also be translated into the change of the fermionic
parities of the wires: if j0ni (j1ni) denotes the state of the
nth wire with even (odd) parity and, for example, we start
from the state j0n0nþ1i with both wires with even parity,

then the braiding Un results in Unj0n0nþ1i ¼ ðj0n0nþ1i þ
j1n1nþ1iÞ=

ffiffiffi
2

p
, and U2

nj0n0nþ1i ¼ j1n1nþ1i. The result of
the braiding, therefore, can be checked by measuring the
change of the Majorana correlation functions in time-
of-flight or spectroscopic experiments [21], or by measur-
ing the parity of the wires by counting the number of
fermions modulo two [18].

Nonideal wires and nonperfect operations.—We have
just demonstrated the braiding for the case of ideal
Kitaev wires and perfect local operations (single site or
link addressing). Remarkably, the topological origin of the
Majorana modes ensures the robustness of the results of the
braiding protocol based on Steps I–IV also in the realistic
case of nonideal wires and local operations provided the
Majorana modes are spatially well separated. We have
checked this numerically by considering two nonideal
wires with J � j�j, � � 0, and assuming that the local
operations have an error � in the following sense:
(i) Switching on the hopping J and/or the pairing � on
the link ðu; 1Þ � ðl; 1Þ also introduces the hopping J� and/
or the pairing �� on the link ðu; 2Þ � ðl; 2Þ. (ii) Switching
off the couplings on the link ðw; 1Þ � ðw; 2Þ also reduces
the couplings on the link ðw; 2Þ � ðw; 3Þ by a factor
(1� �). (iii) Raising the local potential V on the site (u, 1)
results in a local potential �V on the neighboring sites (u, 2)
and (l, 1). As an example, we present in Fig. 3 numerical
results of the braiding protocol with errors � ¼ 0:05 and
� ¼ 0:1 in the local operations for two quantum wires of
the length L ¼ 40 with j�j ¼ 1:5J and � ¼ 0. One can
clearly see the robustness of the final results of the braid-
ing. Note that these results also imply that the protocol

works in the presence of a harmonic trap (see the
Supplemental Material [28]), which also leads to an
extension of the MF wave function (see Ref. [20]).
Braid group.—It is also easy to check that the braiding

unitary Un fulfills all necessary conditions of the braid
group [2]: for any two neighboring braiding unitaries
Un and Unþ1, one has UnUnþ1 � Unþ1Un and
Un�1UnUn�1 ¼ UnUn�1Un. To show this, consider three

wires with left Majorana modes �ð1Þ
L , �ð2Þ

L , and �ð3Þ
L , and the

unitaries U1 ¼ e��
ð1Þ
L �ð2Þ

L =4 ¼ ð1þ �ð1Þ
L �ð2Þ

L Þ= ffiffiffi
2

p
and U2 ¼

e��
ð2Þ
L �ð3Þ

L =4 ¼ ð1þ �ð2Þ
L �ð3Þ

L Þ= ffiffiffi
2

p
that braid the modes �ð1Þ

L ,

�ð2Þ
L and �ð2Þ

L , �ð3Þ
L , respectively. The braid group conditions,

U1U2 � U2U1 and U1U2U1 ¼ U2U1U2, can now be
easily checked by direct multiplications.
These properties can be tested experimentally by mea-

suring the corresponding changes of the fermionic corre-
lation functions. For example, the action ofU1U2 results in

ih�ð1Þ
L �ð1Þ

R i � ih�ð3Þ
L �ð1Þ

R i, ih�ð2Þ
L �ð2Þ

R i � �ih�ð1Þ
L �ð2Þ

R i and

ih�ð3Þ
L �ð3Þ

R i � �ih�ð2Þ
L �ð3Þ

R i, while U1U2U1 produces the

following changes: ih�ð1Þ
L �ð1Þ

R i � ih�ð3Þ
L �ð1Þ

R i, ih�ð2Þ
L �ð2Þ

R i �
�ih�ð2Þ

L �ð1Þ
R i, and ih�ð3Þ

L �ð3Þ
R i � ih�ð1Þ

L �ð3Þ
R i (see Fig. 4). This

change in the correlation functions can be measured, for
example, in TOF or spectroscopic experiments as proposed
in Ref. [21].
Deutsch-Jozsa algorithm. Although the braiding of MFs

is robust, it does not provide a tool to construct a universal
set of gates needed for TQC: as it has been shown in
Ref. [23], only a subgroup of the Clifford group can be
realized via braiding. Fortunately, not all QC algorithms
require a universal set of gates. One example is the
Deutsch-Jozsa algorithm [24], which, as we will show
below, can be implemented for two qubits in a remarkably
efficient way via braiding of MFs.
The Deutsch-Jozsa algorithm allows us to determine

whether the function (‘‘oracle’’) gðxÞ, which is defined
on the space of states of n qubits and takes the values

(a) (b)

FIG. 3 (color online). Evolution of the Majorana correlation

functions hi�ð1Þ
L �ð1Þ

R i (red circle), hi�ð2Þ
L �ð2Þ

R i (blue downward

triangle), hi�ð2Þ
L �ð1Þ

R i (red square), and hi�ð1Þ
L �ð2Þ

R i (blue upward

triangle) during the braiding protocol with errors (a) � ¼ 0:05
and (b) � ¼ 0:01 in the local operations for two nonideal
quantum wires with j�j ¼ 1:5J and � ¼ 0. Markers are only
drawn in regions where the correlation functions are nonzero.
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0 or 1, g: fj0i; j1ig�n � f0; 1g, is constant (has the same
value, say, 0, for all inputs) or balanced (takes value 0 for
half of the inputs, and 1 for the other half). For the
algorithm to work, one needs a robust implementation of
the function g (a faulty oracle spoils the quantum speedup

[29]) as the unitary Ug: jxi � ð�1ÞgðxÞjxi, where jxi 2
fj0i; j1ig�n, which is a major problem for experimental
realizations.

For two qubits with the computational basis
fj00i; j01i; j10i; j11ig, a possible choice for Ug is

Ug0 ¼ diagð1; 1; 1; 1Þ; Ug1 ¼ diagð1; 1;�1;�1Þ;
Ug2 ¼ diagð1;�1;�1; 1Þ; Ug3 ¼ diagð1;�1; 1;�1Þ;
for the constant g0 and the balanced g1, g2, and g3 oracle
functions, respectively. (Note that an equivalent set of
oracles can be obtained by multiplying the above unitaries
with �1.) The algorithm works then in the following way:
after preparing the system in the state j00i, we apply the

Hadamard gate H to each qubit, Hj0i ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
,

Hj1i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
, then we apply the unitary Ug cor-

responding to the oracle under test, then again the
Hadamard gate to each qubit, and, finally, we measure
the probability to find the system in the state j00i. This
probability is 1 if gðxÞ is constant, and 0 if gðxÞ is balanced,
as can be seen from the following calculations:

j00i �H�H 1

2

X

x

jxi�Ug 1

2

X

x

ð�1ÞgðxÞjxi;

�
H�H 1

4

X

x

ð�1ÞgðxÞX
y

ð�1Þx�yjyi;
(1)

where we define x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ with xi, yi 2
f0; 1g, and x � y ¼ x1y1 þ x2y2.
To implement the above algorithm, we use a setup of

three quantum wires in the geometry shown in Fig. 5
and define a computational basis for two qubits as

j00i ¼ fy2 j0fi, j01i ¼ fy3 j0fi, j10i ¼ fy1 j0fi, and j11i ¼
fy1 f

y
2 f

y
3 j0fi [22]. Here j0fi is the vacuum state for fermi-

onic modes fi ¼ ð�ðLÞ
i � i�ðRÞ

i Þ=2, where �ðLÞ
i and �ðRÞ

i are
two Majorana modes on the ith wire. Note that with three
wires we encode only two qubits [30] because the braiding
preserves the total fermionic parity and, therefore, all states
from the computational basis must have the same parity
(odd in our case).
The Hadamard gates and the oracle unitaries Ugi can be

implemented by noting that the braiding of Majorana

modes �i and �j is equivalent to the unitary Uij ¼
e��i�j=4 ¼ ð1� �i�jÞ=

ffiffiffi
2

p
: Then, it is easy to see that

H � 1 ¼ U12U23U12 and 1 �H ¼ U56U45U56 for the
Hadamard gates acting on the first and the second qubit,
respectively, and Ug1 ¼ U2

12, Ug2 ¼ U2
34, and Ug3 ¼ U2

56

for the oracle unitaries (Ug0 ¼ 1). As a result, the Deutsch-
Jozsa-algorithm can be realized with 14 braiding opera-
tions. In our case, however, the number of operations can
be reduced to nine: the sequence

Ui ¼ U45U56U23U12UgiU56U45U12U23

acting on j00i gives U0j00i ¼ j00i for the constant case
and U1j00i ¼ ij10i, U2j00i ¼ j11i, and U3j00i ¼ ij01i
for the balanced case. Note also that this protocol can be
implemented in five steps because operations on the
Majorana modes �1;2;3 and �4;5;6 before and after the oracle

unitary Ugi can be performed in parallel. The final state of

the system and, therefore, the probability to find it in the
state j00i, can be determined by measuring the parities of
the individual wires in a spectroscopic experiment [21] or
fermionic number counting [18]. Taking into account the
discussed insensitivity of the braiding to experimental
imperfections, the proposed protocol provides a robust
implementation of the Deutsch-Jozsa algorithm.
Conclusion.—Cold atom setups combined with local

addressing provide an efficient tool to probe the non-
Abelian anyonic statistics of MFs and to exploit it for
TQC. By adding well-controlled though topologically

(a)

(b)

(c)

FIG. 4 (color online). Braid group in a setup of three wires. We
present the real-time evolution of the correlations functions

ih�ðnÞ
L �ðmÞ

R i under the action of (a) U2U1, (b) U1U2, and

(c) U1U2U1 for a chain of the length L ¼ 40 with j�j ¼ 1:5J
and � ¼ 0. Markers are only drawn in regions where the
correlation functions are nonzero.

γ1

Ug

γ2
γ3γ4γ5
γ6

=
g0 g1

g3g2

Ug

Kitaev wires

(a) (b)

FIG. 5 (color online). (a) Setup and implementation of the
oracle Deutsch-Jozsa algorithm for two qubits via braiding.
(b) Implementation of the oracle unitary Ug via braiding (see

main text).
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unprotected operations (e.g., the SWAP gate), one can go
beyond the braid group and provide a universal ‘‘hybrid’’
set of gates (see also Refs. [31,32]). We will address this
issue in our future work [33].
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