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We make an analytic investigation of rapid quenches of relevant operators in d-dimensional holographic

conformal field theories, which admit a dual gravity description. We uncover a universal scaling behavior in

the response of the system, which depends only on the conformal dimension of the quenched operator in

the vicinity of the ultraviolet fixed point of the theory. Unless the amplitude of the quench is scaled

appropriately, the work done on a system during the quench diverges in the limit of abrupt quenches for

operators with dimension ðd=2Þ � �< d.
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Quantum quenches have recently become accessible in
laboratory experiments [1], which has initiated much acti-
vity by theoretical physicists to understand such systems.
Up until now, most analytic work on the topic of relativistic
quantum quenches has assumed that the field theory is at
weak coupling [2–6].

The study of quantum quenches at strong coupling
is accessible through the gauge-gravity duality [7]. Much
related work studying thermalization in the boundary
theory was done by studying the gravity dual under
the assumption that the nonequilibrium evolution can be
approximated by a uniformly evolving spacetime, e.g.,
Refs. [8–15]. Other approaches study the evolution of
a probe on the static spacetime [16]. The approach of
numerically evolving the dual gravity theory was initiated
in Ref. [17]. Further numerical studies of quenches in a
variety of holographic systems were presented in
Refs. [18–21].

In Refs. [19,21], holography was applied to study
quenches of the coupling to a relevant scalar operator
in the boundary theory. A numerical approach was taken
to study the evolution of the dual scalar field in the bulk
spacetime. For fast quenches, evidence was found
for a universal scaling of the expectation value of the
boundary operator. Similar scaling was observed for the
change in energy density, pressure, and entropy density.
However, no analytic understanding of this behavior was
available.

In this Letter, we investigate these holographic quenches
analytically, focusing on the work done by the quench.
Unlike Refs. [19,21], in which the coupling was an analytic
function of time, we abruptly (but with some degree of
smoothness) switch on this source at t ¼ 0. The coupling is
then varied over a finite interval �t and is held constant
afterwards. We find that for fast quenches, the essential
physics can be extracted by solving the linearized scalar
field equation in the asymptotic anti–de Sitter (AdS)
geometry. Note that our analysis is naturally driven to

this regime by the limit �t ! 0. In contrast to
Refs. [19,21], we are not a priori limiting our study to a
perturbative expansion in the amplitude of the bulk scalar.
Our analytic results also cover any spacetime dimension
d for the boundary theory, whereas Refs. [19,21] were
limited to d ¼ 4.
Let us describe the quenches in more detail: The

coupling in the boundary theory is determined by the
leading non-normalizable mode of the bulk scalar [7].
We set this mode to zero before t ¼ 0, vary it in the interval
0< t < �t, and hold it fixed afterwards. Because the
energy density can only change while the coupling is
changing, we are only interested in the response of the
scalar field during the time span 0< t < �t. Further, since
the response propagates in from the boundary of the
spacetime, the field will only be nonzero within the light
cone t ¼ �. Hence, to determine the work done, we need
only solve for the bulk evolution in the triangular region
bounded by this light cone, the surface t ¼ �t, and the AdS
boundary, as shown in Fig. 1. As is also illustrated, as
�t ! 0, this triangle shrinks to a small region in the
asymptotic spacetime. The normalizable component of
the scalar field, which determines the expectation value
of the boundary operator, can be solved analytically in this
situation, and its scaling with �t can readily be seen from
this solution. From this, we also obtain the scaling of the
energy density in the boundary.
Consider a generic deformation of a conformal field

theory in d spacetime dimensions by the time-dependent
coupling � ¼ �ðtÞ of a relevant operator O� of dimension
�: L0 ! L ¼ L0 þ �O�. The quenches are then char-
acterized by two distinct scales: the mass scale set by the
change �� and that associated with the rate of change,
i.e., 1=�t. As described above, we will be particularly
interested in rapid quenches where the second scale is
much larger than the first, that is, quenches where
��ð�tÞd�� � 1. The gravity dual describing this system
is given by
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wherewe have chosen anAdS radius of 1. The bulk scalar�
is dual to O� with m2 ¼ �ð�� dÞ. The potential uð�Þ
contains terms of order �3 or higher. To simplify our dis-
cussion, we will consider quenches where the conformal
dimension of the operator is a noninteger (for evend and not
a half-integer for odd d—see comments below). Further, we
initially consider dimensions in the range ðd=2Þ � �< d.

Since we are interested in quenches that are homoge-
neous and isotropic in the spatial boundary directions, we
assume that both the background metric and the scalar field
depend only on a radial coordinate � and a time t. We will
work in a spacetime asymptotic to the AdS Poincaré patch
as � ! 0. Hence, the bulk metric is

ds2 ¼ �Aðt; �Þdt2 þ �ðt; �Þ2d~x2 þ ��4Aðt; �Þ�1d�2:

(2)

The (nonlinear) Einstein equations and the scalar field
equation then take the form

0¼� 2ðd�3Þ
ðd�1ÞAuð�Þþ2dðd�3Þ

A
þ�4ð�0Þ2

� d�3

ðd�1ÞAm
2�2�

� _�

A

�
2þ2ðd�2Þðd�1Þ

�
�� _�

A�

�
2�

�
�2�0

�

�
2
�
þ2�2ð�2A0Þ0

A
�4

� _A

A2

�
2þ2

€A

A3
;

(3)

0 ¼ d� uð�Þ
ðd� 1Þ �

m2�2

2ðd� 1Þ þ
�4A

2ðd� 1Þ ð�
0Þ2 þ

_�2

A

� �4 A
0�0

�
� ðd� 2Þ�4A

ð�0Þ2
�2

þ 2 €�

A�
�

_A _�

A2�

þ ðd� 2Þ
_�2

A�2
; (4)

0 ¼ ð�0Þ2
2ðd� 1Þ þ

1

2ðd� 1Þ
� _�

�2A

�
2 þ�00

�
þ 2�0

��
þ

€�

�4A2�
;

(5)

0 ¼ �0 _�
d� 1

þ
_A�0

A�
� A0 _�

A�
þ 2

_�0

�
; (6)

0 ¼ ��uð�Þ
��

�m2�þ �4A�00 þ 2�3A�0 þ �4A0�0

þ ðd� 1Þ�4A�0�0

�
þ

_A _�

A2
� ðd� 1Þ _� _�

A�
�

€�

A
; (7)

where dots and primes denote derivatives with respect
to t and �, respectively. The scalar field will have an
asymptotic expansion of the form

�ðt; �Þ � �d��½p0ðtÞ þ oð�2Þ� þ ��½p2��dðtÞ þ oð�2Þ�;
(8)

where the non-normalizable coefficient p0 is proportional
to �, while the normalizable coefficient p2��d is propor-
tional to hO�i. Similarly,

A� ��2½1þ ad�2ðtÞ�d þ oð�dþ4�2�Þ�: (9)

Here, the coefficient ad�2 controls the energy density (and
pressure) of the dual field theory, as shown in Ref. [19].
Equation (6) is a constraint, which in the limit � ! 0,
determines @tad�2. Integrating over t, we then find

ad�2ðtÞ ¼ C� ð2�� dþ 1Þðd� �Þ
ðd� 1Þ2 p0ðtÞp2��dðtÞ

þ 2�� d

d� 1

Z t

0
d~tp2��dð~tÞ dd~t p0ð~tÞ: (10)

Here, C ¼ ad�2ð�1Þ is an integration constant. With
d ¼ 4, this expression matches that found in Ref. [21],
using Eddington-Finkelstein coordinates.
In our quenches, the coupling to O� is made time

dependent with a characteristic time �t as

� ¼ �ðt=�tÞ: (11)

For general �t, the response p2��d in Eq. (8) cannot be
solved analytically. However, as described in Refs. [19,21],
for large �t (adiabatic quenches), we can find a series
solution for � in inverse powers of �t and, in principle,
we can solve for p2��d analytically.

FIG. 1 (color online). The shaded triangle is the region close
to the boundary of the AdS spacetime where we must solve for
the scalar field. We show several cases with �t1 < �t2 < �t3.
The profile �ðt=�tÞ is held fixed in each case. In particular, the
amplitude �� of the quench remains constant as �t becomes
smaller. As the quench becomes more rapid, the bulk region
shrinks closer to the asymptotic boundary.
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We now present a new analytic approach for the opposite
limit of fast quenches, that is, for quenches where �t is
much smaller than any other scale. As described above, to
answer the question of how much work is done by the
quench, we need only consider the interval 0 � t � �t.
Intuitively, we may expect that when �t is very short, there
is no time for nonlinearities in the bulk equations to become
important, i.e., for the metric to backreact on the scalar.

To make this intuition manifest, we rescale the coordi-
nates and fields by the parameter �t considering their
(leading) dimension in units of the AdS radius: � ¼ �t�̂,

t ¼ �tt̂, A ¼ Â=�t2, � ¼ �̂=�t, and � ¼ �td���̂. With
this rescaling, the limit �t ! 0 then removes the scalar
from the Einstein equations (3)–(6), while leaving the form
of the Klein-Gordon equation (7) unchanged.

The coefficient ad�2 controls the next-to-leading-order
term in A at small �. As we will show, this coefficient
scales as �td�2�. Further, in Eq. (9), this coefficient is
accompanied by a factor of �d and hence this term has

an overall scaling of �t2ðd��Þ. Hence, as long as we are
considering a relevant operator, this term vanishes in the
limit �t ! 0. The same is true of the subleading contribu-
tions in the expression of �. Hence, for fast quenches
with small �t, we can approximate the metric coefficients
as simply

�̂ ¼ �̂�1; Â ¼ �̂�2: (12)

The equation for �̂ becomes the Klein-Gordon equation in
the AdS vacuum spacetime, i.e.,

�̂2@2�̂�̂� ðd� 1Þ�̂@�̂�̂� �̂2@2
t̂
�̂þ �ðd� �Þ�̂ ¼ 0:

(13)

That is, in the limit of small �t, the work done in the full
nonlinear quench can be determined by simply solving the
linear scalar field equation (13) in empty AdS space.

Now, we consider sources that vanish for t � 0 and are
constant for t � �t. In 0< t < �t, we vary the source as

p0ðtÞ ¼ �pðt=�tÞ�; (14)

where � is a positive exponent. Note that here p0ðt �
�tÞ ¼ �p. Since � ¼ 0 before we switch on the source
at t ¼ 0, it remains zero throughout the bulk up to the null
ray t ¼ �. Therefore, we impose

�ðt ¼ �; �Þ ¼ 0: (15)

Evaluating the scalar field equation (13) subject to the
boundary conditions (14) and (15), we find [22]

p2��dðtÞ ¼ b��t
d�2��pðt=�tÞd�2�þ�; (16)

with

b� ¼ � 2d�2��ð�þ 1Þ�ðdþ2
2 ��Þ

�ðdþ 1þ �� 2�Þ�ð�� d�2
2 Þ : (17)

Of course, if we construct more complicated sources with a
series expansion of monomials as in Eq. (14), then since
Eq. (13) is linear, the response is simply given by the sum
of corresponding terms as in Eq. (16).
The response coefficient (16) exhibits two noteworthy

features: First, we see that the overall scaling of the
response is �td�2�. This is precisely the behavior found
in the numerical studies of Ref. [21] in the case d ¼ 4.
Second of all, p2��d varies in time as tdþ��2�. Therefore,
if � < 2�� d, the response (i.e., the operator expectation
value hO�i in the boundary theory) diverges at t ¼ 0. For a
source constructed as a series, both of these features in the
response are controlled by the smallest exponent.
For homogeneous quenches, the diffeomorphism Ward

identity reduces to @tE ¼ �hO�i@t� [19,21]. Hence, we
can evaluate the change in the energy density as

�E ¼ �AE

Z þ1

�1
p2��d@tp0dt; (18)

with [23]

AE ¼ 2�� d

16�Gdþ1

¼ ð2�� dÞ�d=2�ðd2Þ
2dðdþ 1Þ�ðd� 1ÞCT: (19)

Since @tp0 vanishes for t < 0 and t > �t, the above integral
reduces to an integral from 0 to �t. It is for this reason that
we do not need to determine the response p2��d after
t ¼ �t [25]. Further, for fast quenches, the change in
energy density will scale as �td�2�. Note that @tp0 scales
as �t�1, but the range of the integral 0< t < �t adds
an additional scaling of �tþ1. Hence, the net scaling of
�E is precisely the scaling of p2��d. Again, this precisely
matches the scaling found numerically in Ref. [21] for
d ¼ 4. In fact, this behavior can be fixed as follows: Since
Eq. (13) is linear, we must have p2��d / �p and hence
�E / �p2 from Eq. (18). Finally, dimensional analysis
demands �E ’ �p2=�t2��d, up to numerical factors.
However, recall the singular behavior in the response at

t ¼ 0 for � < 2�� d. Despite this divergence, one can
easily see that in fact, the corresponding integral (18)
remains finite as long as � > �� ðd=2Þ. That is, for fixed
� and d, we are constrained as to how quickly the source
may be turned on. In fact, a more careful examination [22]
of the bulk solutions indicates that our analysis is valid for
� > �� ðd=2Þ þ ð1=2Þ. For quenches not satisfying this
inequality, we can no longer ignore the backreaction of the
scalar on the spacetime geometry.
To summarize, we have shown that in the limit of fast

quenches, the response and the energy density of a strongly
coupled system which admits a dual gravitational descrip-
tion scales as �td�2�. Here, ðd=2Þ � �< d is the confor-
mal dimension of the quenched operator in the vicinity
of the ultraviolet fixed point. Although we considered a
quench from a vacuum state at t ¼ 0, our results are
universal. That is, they are independent of the initial state
of the system; e.g., we may start with a thermal state, as in
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Refs. [19,21]. This is again a reflection of the fact that
abrupt holographic quenches are completely determined
by the UV dynamics of the theory—see Fig. 1. Also, if
different operators are quenched simultaneously, the
response is dominated by the onewith the largest conformal
dimension.

We emphasize that while our calculations only consid-
ered the linearized scalar equation (13), our results apply
for the full nonlinear quench. In the limit �t ! 0, the
relevant physics occurs in the far asymptotic geometry
(see Fig. 1) where the bulk scalar and perturbations of the
AdS metric are all small. This contrasts with Refs. [19,21],
which only worked within a perturbative expansion in the
amplitude of the scalar. Of course, the scalings determined
there match those found here, but it was uncertain there if
they would persist in a full nonlinear analysis.

Of course, the present analysis does not predict the
dynamical evolution of the system for t > �t. However,
for the fast quenches above, an arbitrarily large energy
density is injected into the bulk in the limit �t ! 0, and
hence we can expect quite generally that a black hole
forms. Further, we can deduce the properties of the final
state black hole or, alternatively, of the equilibrium
thermal state on the boundary as t ! 1. Indeed, since
the coupling and energy density are constant for t > �t,
�ðþ1Þ ¼ �ð�tÞwhile Eq. (18) determines the final energy
density of the system, to leading order in �t. Together,
these parameters completely specify the final thermal
equilibrium state.

Note that our analysis strictly applies to relevant opera-
tors, for which d� �> 0. With a marginal operator (i.e.,
� ¼ d), we can expect �E / �t�d on purely dimensional
grounds [17]. While this matches the scaling found above,
our numerical coefficients would no longer be valid.
Marginal operators were also considered in Refs. [9,15]
with a four-dimensional bulk. This case is analytically
accessible because the scalar propagates on the light
cone. Extending this analysis to an odd-dimensional bulk
is more challenging [9] because the scalar propagator is
nonvanishing throughout the interior of the light cone,
similar to that for the relevant operators studied here.

Our discussion was also limited to ðd=2Þ � �< d, while
unitarity bounds also allow for ðd=2Þ � 1 � �< ðd=2Þ. In
the latter range, we must consider the so-called ‘‘alternate
quantization’’ of the bulk scalar [26]. In fact, the asymptotic
expansion of the scalar takes precisely the same form as in
Eq. (8). However, in this regime, p0 (p2��d) is the coeffi-
cient of the (non-)normalizable mode. Our analysis applies
equally well for this range of �, and so one still finds
p2��d ’ �p�td�2�. That is, the response becomes vanish-
ingly small as �t ! 0 with �p kept fixed. Hence, to pro-
duce a finite hO�i or finite �E, we would need to scale �p
with an inverse power of �t.

When � is an integer for even d or a half-integer for odd
d, the scaling of the response hO�i receives additional

logð�tÞ corrections [19]. These logarithmic corrections
arise from log� modifications in the asymptotic expansion
(8) of the bulk scalar and are easily computed analytically
following the present approach [22].
Another exceptional case arises with � ¼ 2�� d� n,

where n is a positive integer. In this case, Eq. (17) indicates
b� ¼ 0. Hence, if the source is given by a series of mono-
mials (14), the scaling of the response will be controlled by
the first subleading contribution. With a single monomial,
the (subleading) scaling of the response is controlled by
nonlinearities in the bulk equations [22], i.e., p2��d ’
�t��ð�p�td��Þn, where n ¼ 2 if the potential contains a
�3 term and n ¼ 3 otherwise.
It is interesting to consider the limit of abrupt quenches

with �t ¼ 0, as this usually sets the starting point in
analyses at weak coupling, e.g., Refs. [2,6]. Our holo-
graphic result �E ’ �p2=�t2��d indicates that the energy
density diverges for an abrupt quench with �> ðd=2Þ
(a logarithmic divergence appears for � ¼ ðd=2Þ [19,22]).
Hence, it would be interesting to carefully compare these
holographic results with those for previous weak coupling
calculations [27]. Let us note here that many of these
studies, e.g., Refs. [2,6], consider the regime �< d=2
where �E does not diverge in our holographic framework.
However, singular behavior was observed for abrupt
quenches where our holographic model also produces
divergences [28]. Of course, the preceding considerations
assume a standard protocol where �p is held fixed in
the limit �t ! 0. Instead, if we scale the source to zero

as �p / �t��d=2, �E will remain finite. However, such a

limit still produces a divergent response since p2��d �
�td�2��p / �td=2��. An alternate choice would be to
scale �p / �t2��d, which would leave hO�i finite while
�E ! 0.
An important question to ask is to what extent our results

are relevant for everyday physical systems. Gauge theories
with a dual gravitation description are necessarily strongly
coupled and have an ultraviolet fixed point with large
central charge. The framework of the gauge-string duality
allows for the study of both the finite ’t Hooft coupling
corrections (the higher-derivative corrections in the gravi-
tational dual) and nonplanar (quantum string-loop) correc-
tions. We expect that our gravitational analyses are robust
with respect to the former, as the relevant near-boundary
spacetime region is weakly curved. Whether finite central
charge corrections are important or not is an open question.
The universal behavior uncovered is of relevance to fast

quenches of relevant couplings in the vicinity of an ultra-
violet fixed point—as such, it is challenging to observe it in
experimental settings. We expect that fixed points in con-
densed matter systems described by relativistic conformal
field theories may exhibit the same universal behavior.
We would like to thank David Berenstein, Sumit Das,

Damián Galante, Luis Lehner, David Mateos, Shiraz
Minwalla, João Penedones, Misha Smolkin, and Julian

PRL 111, 201602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 NOVEMBER 2013

201602-4



Sonner for useful discussions. A. B. and R. C.M. would
like to thank the Lorentz Center for hospitality, where part
of this work was done. Research at Perimeter Institute is
supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the
Ministry of Research and Innovation. A. B. and R. C.M.
gratefully acknowledge support from NSERC Discovery
Grants. Research by R. C.M. is further supported by fund-
ing from the Canadian Institute for Advanced Research.

[1] For example, see the following reviews: S. Mondal,
D. Sen, and K. Sengupta, Lect. Notes Phys. 802, 21 (2010);
J. Dziarmaga, Adv. Phys. 59, 1063 (2010); A. Polkovnikov,
K. Sengupta, A. Silva, andM.Vengalattore, Rev.Mod. Phys.
83, 863 (2011); A. Lamacraft and J. E. Moore, in Ultracold
Bosonic and Fermionic Gases, edited by A. Fletcher,
K. Levin, and D. Stamper-Kurn, Contemporary Concepts
in Condensed Matter Science Vol. 5 (Elsevier, New York,
2012).

[2] P. Calabrese and J. L. Cardy, Phys. Rev. Lett. 96, 136801
(2006).

[3] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.
Rev. Lett. 98, 050405 (2007).

[4] C. Kollath, A.M. Lauchli, and E. Altman, Phys. Rev. Lett.
98, 180601 (2007).

[5] S. R. Manmana, S. Wessel, R.M. Noack, and A.
Muramatsu, Phys. Rev. Lett. 98, 210405 (2007).

[6] S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
[7] O. Aharony, S. S. Gubser, J.M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rep. 323, 183 (2000).
[8] U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski,

J. High Energy Phys. 02 (2000) 039.
[9] S. Bhattacharyya and S. Minwalla, J. High Energy Phys.

09 (2009) 034.
[10] R. A. Janik and R. B. Peschanski, Phys. Rev. D 74, 046007

(2006).
[11] H. Ebrahim and M. Headrick, arXiv:1010.5443.
[12] J. Abajo-Arrastia, J. Aparı́cio, and E. López, J. High
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