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A big open question in the quantum information theory concerns the feasibility of a self-correcting

quantum memory. A quantum state recorded in such memory can be stored reliably for a macroscopic

time without need for active error correction, if the memory is in contact with a cold enough thermal bath.

Here we report analytic and numerical evidence for self-correcting behavior in the quantum spin lattice

model known as the 3D cubic code. We prove that its memory time is at least Lc�, where L is the lattice

size, � is the inverse temperature of the bath, and c > 0 is a constant coefficient. However, this bound

applies only if the lattice size L does not exceed a critical value which grows exponentially with �. In that

sense, the model can be called a partially self-correcting memory. We also report a Monte Carlo

simulation indicating that our analytic bounds on the memory time are tight up to constant coefficients.

To model the readout step we introduce a new decoding algorithm, which can be implemented efficiently

for any topological stabilizer code. A longer version of this work can be found in Bravyi and Haah,
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Any practical memory device must function reliably in
the presence of small hardware imperfections and protect
the recorded data against thermal noise. Building a mem-
ory capable of storing quantum information is particularly
challenging since a quantum state must be protected
against both bit-flip and phase-flip errors.

Ground states of topologically ordered many-body sys-
tems, such as fractional quantum Hall liquids [1,2] and
unpaired Majorana fermions in nanowires and 2D hetero-
structures [3–7], were proposed as a natural quantum data
repository insensitive to small hardware imperfections. A
qubit encoded into the ground subspace of a topologically
ordered system is almost perfectly decoupled from any
local perturbation due to the local indistinguishability of
the ground states [8–11].

To undo the effect of noise, a user of any memory, either
classical or quantum, must invoke some form of error
correction. It was shown by Dennis et al. [12] that topo-
logical memory based on Kitaev’s 2D toric code model [8]
can tolerate stochastic local noise provided that error cor-
rection is performed frequently enough to prevent errors
from accumulating. An intriguing open question raised in
[12,13] is whether topological memories can be self-
correcting, that is, whether active error correction can be
imitated by the natural dynamics of the memory system
coupled to a thermal bath. Ideally, the lifetime of such
memory can be made arbitrarily large by increasing the
system size. The physical mechanism behind self-
correction envisioned in [13] relies on ‘‘energy barriers’’
separating distinct ground states and energy dissipation.
Unfortunately, examples of self-correcting memories are
only known to exist in the 4D geometry [14].

One reason that self-correction is hard, if not impossible,
to achieve in 2D or 3D is the presence of pointlike excita-
tions carrying a topological charge [12,15,16]. Anyons in
the 2D toric code [8] provide a paradigmatic example of
such excitations. Even though creation of anyon pairs from
the ground state is suppressed by a constant energy gap,
anyons can diffuse over large distances at no extra energy
cost. If the average distance traveled by anyons due to the
diffusion is comparable with the typical anyon separation,
information recorded in the memory is lost [17]. The lack
of self-correction in the 2D toric code model was rigor-
ously confirmed by Alicki et al. [18] who showed that its
memory time is a constant independent of the lattice size.
Here we assess self-correcting properties of a new class

of topological memories where the thermal diffusion of
topological excitations is suppressed by energy barriers.
The first model in this class, known as the 3D cubic code,
has been recently discovered by Haah [19]. The model
describes quantum spins-1=2, or qubits, that live at sites
of the regular 3D cubic lattice of linear size Lwith periodic
boundary conditions. Each site of the lattice is occupied by
two qubits. The cubic code Hamiltonian introduced in [19]
has the form

H ¼ �J
X
c

GX
c þGZ

c ;

where the sum runs over all L3 elementary cubes c and the
operators GX

c , G
Z
c act on the qubits of c as shown in Fig. 1.

The positive coupling constant J will be set to J ¼ 1=2 for
simplicity.
We shall refer to operators GX

c , G
Z
c as stabilizer gener-

ators, or simply stabilizers. Note that each stabilizer acts
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nontrivially only on 8 qubits. Let us recall some basic
properties of the cubic code [19]. First, one can easily
check that the stabilizersGX

c , G
Z
c0 commute with each other

for all c, c0. A ground state ofH is a commonþ1 eigenstate
of all stabilizers. The degeneracy of the ground states is

2kðLÞ for some integer 2 � kðLÞ � 4L. The ground sub-
space of H has topological order; that is, different ground
states cannot be distinguished locally on any subset of
qubits with linear size <L. Excited states of H can be
described by configurations of defects, that is, stabilizers
whose eigenvalue is �1. Each defect costs one unit of
energy.

The key property of the model is that no local operator
can create a single defect from the ground state or move a
defect farther than a certain constant distance away without
creating other defects [19]. This property was used in [20]
to show that any sequence of local errors mapping a ground
state of H to an orthogonal ground state must traverse an
energy barrier proportional to logðLÞ. This Letter extends
results of Ref. [20] by analyzing the thermal dynamics of
the cubic code and calculating its memory time as a
function of the lattice size and the temperature.

Following Refs. [14,17,18,21], we shall model interac-
tion between the memory and the thermal bath using the
Davies weak coupling limit [22]. It provides a Markovian
master equation of the following form:

_�ðtÞ ¼ �i½H;�ðtÞ� þLð�ðtÞÞ; t � 0: (1)

Here �ðtÞ is the state of the memory at time t such that �ð0Þ
is a ground state ofH. The Lindblad generatorL describes
dissipation of energy and has a form

Lð�Þ ¼ X
�

X
!

hð�;!Þ
�
A�;!�A

y
�;! � 1

2
f�; Ay

�;!A�;!g
�
;

(2)

where � runs over all lattice sites. We assume there are
local Hermitian operators A� that couple the memory with
the thermal bath which yields the spectral components
A�;! in Eq. (2) defined by

P
!e

�i!tA�;! ¼ eiHtA�e
�iHt,

and hð�;!Þ are coefficients that obey the detailed balance
equation hð�;�!Þ ¼ e��!hð�;!Þ. Thus, hð�;!Þ is the

energy fluctuation rate. The detailed balance equation is
the only part of our model that depends on the bath
temperature. It guarantees that the Gibbs state �� �
e��H is a fixed point of the dynamics, Lð��Þ ¼ 0, which

is furthermore unique under natural ergodicity conditions
[23]. We assume that kA�k � 1 and hð�;!Þ ¼ Oð1Þ for all
� and !.
The encoded information is retrieved from the final state

�ðtÞ by measuring an error syndrome (a configuration of
defects) and performing an error correction. The former
involves a nondestructive eigenvalue measurement of all
generators GX

c , G
Z
c . The latter is specified by an algorithm

that takes as input the measured syndrome s and returns a
correcting Pauli operator annihilating all the defects in s.
Let �ec be the linear map describing the net action of the
syndrome measurement and the error correction. We shall
refer to�ec as a decoder. Note that syndrome measurement
and error correction can also be used to prepare the initial
state �ð0Þ.
Our first result is an upper bound on the storage error,

that is, the trace distance between the initial encoded state
and the final error corrected state.
Theorem 1: There exists a decoder �ec and constants

c, c0 > 0 such that for any inverse temperature �> 0, any

L � ec
0�, any state �ð0Þ supported on the ground subspace

of H, and any evolution time t � 0 one has

k�ð0Þ ��ecð�ðtÞÞk1 � OðtÞ2kðLÞL3�c�: (3)

The error correction algorithm used by the decoder has
running time polyðLÞ.
In the following we shall be interested in the smallest

ground state degeneracy, kðLÞ ¼ 2. This happens for any
odd 3 � L � 200 such that L is not a multiple of 15 or 63
[19,24]. If one is willing to tolerate a fixed storage error �,
say � ¼ 0:01, the memory time Tmem can be defined as the
smallest t � 0 such that k�ð0Þ ��ecð�ðtÞÞk1 � �.
Theorem then implies that

Tmem � Lc��3 for L � L? ’ ec
0�: (4)

Here we neglected the overall constant coefficient. This
shows that for low temperature, � � 1, the memory time
is a growing function of the lattice size L with a power law
scaling, whose exponent is proportional to �. This power
law growth occurs over a broad range of lattice sizes, and,
to the best of our knowledge, provides the first realistic
example of a topological memory with a self-correcting
behavior. The bound Eq. (4) agrees with a naive estimate of
the memory time based on the Arrhenius law and the
logarithmic scaling of the energy barrier separating distinct
ground states [20]. For a given temperature �, the best
lower bound on the memory time Tmemð�Þ is obtained by

choosing L ¼ ec
0�, that is,

Tmemð�Þ � ecc
0�2

(5)

FIG. 1. Stabilizer generators of the 3D cubic code. Here
X � �x and Z � �x represent single-qubit Pauli operators,
while I is the identity operator. Double-letter indices represent
two-qubit Pauli operators, for example, IZ � I � Z,
ZZ � Z � Z, II � I � I, etc.
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for � � 1. For comparison, the memory time of the 2D
toric code model grows only exponentially with �; see
Refs. [17,18].

The memory time of the cubic code has also been
computed numerically for a range of �’s and L’s. The
numerical simulation results shown in Figs. 2 and 3
strongly suggest that our analytic bounds in Eqs. (4) and
(5) are tight. In particular, we numerically found c 	 2:93,
which is in a good agreement with the analytic estimate
c ¼ 2= log2 	 2:89. The derivation of c and details of the
numerical simulation can be found in the Supplemental
Material [25]. We note that both theorem and our numeri-
cal simulation use the same decoder at the readout step as
described below.

It should be emphasized that the cubic code offers only a
partial quantum self-correction, as opposed to the truly
self-correcting 4D toric code [14]. Indeed, the latter model
exhibits a phase transition at nonzero temperature, detected
by operators of extensive support, which we may call order
parameters. They form an algebra of Pauli matrices acting
on 6 logical qubits enabling one to store quantum infor-
mation reliably in the thermal Gibbs state with a suitable
encoding [14]. The memory time becomes infinite in the
thermodynamic limit. In the case of the 3D cubic code,
however, there is no order parameter that can be used to
store information in the Gibbs state at nonzero tempera-
ture. Instead, information is encoded in the ground state
subspace, and the self-correction is due to energy barriers

that slow down the process of relaxation towards the Gibbs
state �� (quantum glassiness). These energy barriers, how-

ever, are not high enough for a phase transition to occur.
To make this more quantitative, define the relaxation time
� to be the least t > 0 such that k�ðtÞ � ��k1 � � for a

fixed small � > 0, where �ð0Þ is a ground state. Choosing
any 0 � t � Tmem and noting that �ecð�ðtÞÞ 	 �ð0Þ, one
gets k�ðtÞ � ��k1 � k�ð0Þ ��ecð��Þk1 ¼ �ð1Þ since

�ecð��Þ is a completely mixed state on the ground state

subspace. It follows that the relaxation time � is at least

Tmem ¼ �ðecc0�2Þ. The numerically observed system size
cutoff beyond which the memory time levels off is an
interesting new phenomenon that calls for explanation.
Let us now prove theorem. The main ingredient of the

proof is a new error correction algorithm which we call a
renormalization group (RG) decoder. It falls into a larger
family of error correction algorithms using real-space re-
normalization methods [26,27]. The RG decoding is a
sequence of simple subroutines parametrized by integer
levels p ¼ 0; 1; . . . ; blog2Lc. At any given level p, the
decoder decomposes a syndrome into disjoint connected
clusters of defects, where the connectivity is defined using
2p as a unit of length. This step can be implemented in time
OðNÞ, where N is the volume of the lattice [28]. The
decoder then examines each cluster individually and tries
to ‘‘annihilate’’ it by a Pauli operator supported on a
rectangular box enclosing the cluster. Clusters that cannot
be annihilated in this way are passed to the next level (that
is, pþ 1). The time needed to test whether a given con-
nected cluster can be annihilated depends on a particular
code. For the cubic code we show how to perform this test
in time OðVÞ, where V is the volume of the smallest
rectangular box enclosing the cluster [28]. Once the

FIG. 3 (color online). The maximum memory time Tmem ver-
sus the inverse temperature �. The memory time is maximized
with respect to the system size. The logarithm of Tmem clearly
follows a quadratic relation with � as opposed to a linear one
(inset).

FIG. 2 (color online). The memory time Tmem versus the
system size L. The data for � ¼ 4:3, 4.5, 4.7, 4.9, 5.1, 5.25 are
shown (starting from the bottom). The left bottom plot shows the
exponent of the power law fit of Tmem for the first few system
sizes. It indicates that Tmem / L2:93��10:5 for L < L?, where
L? is the optimal system size where Tmem reaches maximum.
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decoder reaches the highest level, p ¼ blog2Lc, it returns
the product of annihilation operators over all clusters that
have been successfully annihilated.

To prove the bound Eq. (3), define an energy cutoff
m ¼ c logðLÞ, where c is a constant to be chosen later.
Let �� and �þ be the projectors onto the subspace
spanned by eigenstates of H with energy E � m and
E>m, respectively. Introduce auxiliary Lindblad gener-
atorsL� andLþ defined by Eq. (2) where A�;! is replaced

by B�;! � ��A�;! and C�;! � �þA�;!, respectively.

Simple algebra shows that, for any state � diagonal in
the eigenbasis of H, one hasLð�Þ ¼ L�ð�Þ þLþð�Þ and

eLtð�Þ ¼ eL�tð�Þ þ
Z t

0
dseL�ðt�sÞLþeLsð�Þ: (6)

We claim that

�ec½eL�tð�ð0ÞÞ� ¼ �ð0Þ (7)

if the readout map �ec uses the RG decoder.

Indeed, eL�tð�ð0ÞÞ is a mixture of states of form jc i ¼
��En 
 
 
��E2��E1jgi, where Ei are few-qubit Pauli
operators that appear in the expansion of A�;! and jgi is
some ground state of H. Since Pauli errors map eigenvec-
tors of H to eigenvectors of H, one has either c ¼ 0 or
jc i ¼ En 
 
 
E2E1jgi. By definition of��, the latter case
is possible only if all intermediate states Ej 
 
 
E1jgi have
at most m defects. We can now apply theorem 2 of
Ref. [20] that characterizes excited states of the cubic
code achievable from the ground state by a chain of local
errors with a given energy cutoff m. The theorem asserts
that the syndrome s of jc i cannot contain topologically
charged clusters of defects (i.e., clusters that cannot be
created from the ground state locally) separated from other
defects by a distance greater than R ¼ exp½�ðmÞ�. By
choosing small enough constant c, we can ensure that
R � L. Simple geometric arguments then show that the
syndrome s of jc i can be decomposed into well-isolated
topologically neutral clusters of defects such that the RG
decoder correctly identifies and annihilates each of those
clusters; see lemma 4 in [28]. This proves Eq. (7).

Let �ðtÞ ¼ k�ecð�ðtÞÞ� �ð0Þk1 be the storage error.
From Eqs. (6) and (7) one easily gets

�ðtÞ � tmax
0�s�t

kLþeLsð�ð0ÞÞk1: (8)

Choose a constant f ¼ Oð1Þ such that hð�;!Þ ¼ 0 when-

ever j!j> f. Let ~�þ be the projector onto the subspace
spanned by eigenstates ofH with energy E>m� 2f. The
definition ofLþ and the assumption kA�;!k ¼ Oð1Þ imply

�ðtÞ � OðL3tÞTr½ ~�þeLsð�ð0ÞÞ� ¼ OðL3tÞTr ~�þe��H:

(9)

Here the last equality follows from the detailed balance
condition and the fact that �ð0Þ is the ground state. The

dimension of the subspace with exactly n defects is

�2kðLÞðNnÞ, where N ¼ 2L3 is the number of stabilizer

generators. It follows that

�ðtÞ � OðL3tÞ2kðLÞe�a�m
X

n�m�2f

N
n

� �
e�ð1�aÞ�n (10)

for any constant 0< a< 1. Substituting m ¼ c logðLÞ and
choosing the lattice size such that N � eð1�aÞ� yields

�ðtÞ � OðtÞ2kðLÞN1�ac�, which is equivalent to Eq. (3).
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