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Spectral homodyne detection, a widely used technique for measuring quantum properties of light beams,

cannot retrieve all the information needed to reconstruct the quantum state of spectral field modes. We

show that full quantum state reconstruction can be achieved with the alternative measurement technique of

resonator detection. We experimentally demonstrate this difference by engineering a quantum state with

features that go undetected by homodyne detection but are clearly revealed by resonator detection.
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Quantum states of light offer novel capabilities for in-
formation exchange and processing that are actively inves-
tigated. These range from increased security to quantum
data compression and quantum teleportation. In order to
fully harness such capabilities, it is necessary to coherently
exploit the larger configuration space of multimode fields
[1–7]. Quantum states can then be entangled over many
modes and present useful multimode quantum correlations.
Spectral modes, with well-defined frequencies, are particu-
larly interesting in this respect as they can be easily sepa-
rated by spectral filtering.

To determine the spectral content of quantum states of
light, homodyne techniques stand as the most important
class of quantummeasurements available in the continuous
variable regime [8–12]. By interfering the field of interest
with a suitable classical field, the local oscillator (LO), they
provide direct access to the phase space distribution of field
quadratures.

The detection of spectral modes is usually performed
with spectral homodyne detection. In this case, a spectrally
narrow laser field constitutes the LO, and the detected
photocurrent undergoes Fourier analysis, its power spec-
trum providing all the accessible information about the
quantum state. The technique has been employed in obser-
vations of quantum noise squeezing, phase space recon-
struction of a squeezed quantum state, and EPR-type
entanglement in spectral modes [13–16]. More recently,
it has allowed the teleportation of quantum correlations as
well as partial realization of other quantum information
protocols [17–19]. It has been noted, however, that homo-
dyne detection does not yield a complete measurement of
the quantum state of light spanning over the two sideband
modes which contribute to quantum noise [20–22].

An alternative measurement technique, here called
‘‘resonator detection,’’ consists of a ‘‘self-homodyne’’
technique which employs an optical resonator to manipu-
late the spectral modes prior to intensity measurement.
This technique allows the measurement of quantum noise

in experimental situations in which an external LO is not
readily available [23,24]. That feature is thought to be the
only advantage of resonator detection, which is usually
considered to be equivalent to the spectral homodyne
technique as a quantum measurement [25–28].
In this Letter, we show that resonator detection indeed

provides a complete joint measurement of the two-sideband
mode quadrature quantum fluctuations and correlations,
allowing us to completely reconstruct the two-mode quan-
tum state. It is therefore more powerful as a quantum
measurement than the spectral homodyne detection. We
provide an experimental illustration of this property by
exhibiting two Gaussian quantum states which are per-
fectly distinguishable with resonator detection, whereas
they appear indistinguishable with homodyne detection.
Photodetection by light absorption is described by the

measurement operator ÎðtÞ ¼ Ê�ðtÞÊþðtÞ, where the posi-
tive and negative frequency parts of the electric field
operator form a mode continuum [29]:

ÊþðtÞ ¼
Z

d!e�i!tâ!; Ê�ðtÞ ¼ ½ÊþðtÞ�y: (1)

Field amplitude p̂! and phase q̂! quadrature observables,
fulfilling the canonical commutation relation ½p̂!; q̂!0 � ¼
2i�ð!�!0Þ, satisfy â! ¼ ðp̂! þ iq̂!Þ=2.
Homodyne detection employs as the input field a LO

mode, i.e., a coherent state j�i!0
(at frequency !0), to

amplify the quantum noise stemming from modes in its
frequency vicinity and possessing the quantum state of
interest, �̂. In the balanced detection configuration, the
associated quantum measurement is represented by the
operator

�ÎðtÞ ¼ ��âðtÞ þ �âyðtÞ; (2)

where âðtÞ ¼ R
d!e�ið!�!0Þtâ! and the frequency integral

is limited around !0 by detection bandwidth. Perfect spa-
tial overlap between LO and quantum modes is assumed.
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Spectral resolution of field modes is achieved by Fourier

analysis of �ÎðtÞ. Experimentally, it is performed by mix-
ing the photocurrent with a sinusoidal electronic reference
at frequency � and integrating the result for a time com-
patible with the desired spectral resolution. The following
operator condenses the ideal quantum measurement (unit
efficiency) of the spectral photocurrent fluctuations:

�Î� ¼ ��â!0þ� þ �ây!0�� ¼ j�jffiffiffi
2

p ðÎcos þ iÎsinÞ; (3)

Îcos and Îsin being the two Hermitian operators associated
with the cosine and sine photocurrent observables, respec-
tively [8,20]. They are given by

Îcosð’Þ ¼ cos’p̂þ þ sin’q̂þ � X̂þð’Þ;
Îsinð’Þ ¼ � sin’p̂� þ cos’q̂� � X̂�ð’þ �=2Þ; (4)

where the LO phase ’ (in � ¼ j�jei’) determines the
direction of quadrature observation in phase space.
Modes labeled by subscripts þ and � are the symmetric
and antisymmetric coherent combinations, respectively, of
spectral sideband modes !0 ��, in the form

p̂� ¼ 1ffiffiffi
2

p ðp̂!0þ� � p̂!0��Þ;

q̂� ¼ 1ffiffiffi
2

p ðq̂!0þ� � q̂!0��Þ:
(5)

They represent the quadrature operators of modes naturally
associated with spectral homodyne detection.

The measurement operators of Eq. (4) are each single-
mode quadrature observables [30]. The cosine photocur-
rent component refers to the symmetric mode and the sine
component to the antisymmetric mode. The LO phase
controls the direction of observation in phase space for
both individual modes, which are thus connected to one
another: It is not possible to rotate phase spaces indepen-
dently. Hence only two-mode correlations of the type

hX̂þð’ÞX̂�ð’þ �=2Þi can be accessed, while moments

of the form hX̂þð’ÞX̂�ð’Þi are missing.
Consider E!0�� ¼ 1

2 ð�2p̂!0�� þ�2q̂!0��Þ � 1 as the

energy present in the quantum noise of each spectral mode
above zero point fluctuation. The missing two-mode
moment then reads as E!0þ� � E!0��. In the spectral

modal basis, it has a clear meaning: energy imbalance.
With only one controllable parameter, homodyne detection
is blind to two-mode energy asymmetry, since it treats
spectral modes in a perfectly indistinguishable manner
according to Eq. (4). Although some classes of the quan-
tum states commonly produced in laboratories, such as in
spontaneous parametric down-conversion, should present
sideband modes with no energy imbalance, we must point
out that many other quantum states, such as those relying
on resonant phenomena (e.g., atomic emission), should
possess imbalanced fluctuations in sideband modes.

In most experiments, the phases of the optical field
and the electronic oscillator are not locked to each other.

Thus, only the photocurrent spectral noise power SHD ¼
ð�2Îcos þ �2ÎsinÞ=2 carries quantum state information
[31]. Its expression in terms of symmetric and antisym-
metric modes reads as

SHDð’Þ¼1

2
cos2’ð�2p̂þþ�2q̂�Þþ1

2
sin2’ð�2p̂�þ�2q̂þÞ

þ1

2
sin2’ðCp̂þq̂þ�Cp̂�q̂�Þ; (6)

where Côô0 denotes the symmetrized correlation function
of quadratures ô and ô0. By scanning the LO phase ’, one
can therefore measure only the three noise-dependent
coefficients figuring in Eq. (6).
Let us now turn to resonator detection. Equation (3)

describes the quantum observables associated with the
spectral analysis of intensity measurement, where � is the
mean field impinging on the photodetector. Reflection off
an optical resonator placed just prior to intensity detection
changes modal annihilation operators according to [28]

â ! ! rð�!Þâ! þ tð�!Þb̂!; (7)

where the resonator reflection rð�!Þ and transmission

tð�!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ð�!Þ

p
coefficients, which combine the

input quantum field of interest â! with a field mode b̂! in
a vacuum state, are functions of cavity detuning �! ¼
ð!�!cÞ=� relative to the cavity bandwidth�. In addition,
the resonator performs the transformation � ! �r ¼
rð�Þ� on the mean value of the input field of frequency
!0. The detuning � ¼ ð!0 �!cÞ=� is a parameter which
is experimentally controllable by scanning the cavity
length. The intensity of the reflected field is then measured
and Fourier analyzed, yielding �-dependent photocurrent

spectral components Ĵcos and Ĵsin given, respectively, by

Ĵcos ¼ x�p̂� þ y�q̂� þ x��p̂�� þ y��q̂�� þ Ĵu;

Ĵsin ¼�y�p̂� þ x�q̂� þ y��p̂�� � x��q̂�� þ Ĵv;
(8)

where mode notation has been compacted,!0 ��!��,
and coefficients x�� and y�� are real functions of �:

x�� þ iy�� ¼ R�� ¼ 1ffiffiffi
2

p rð�Þ
jrð�Þj r

�ð���=�Þ: (9)

Operators Ĵu and Ĵv stand for vacuum contributions related
to cavity losses. We see in expression (8) that, unlike
homodyne detection, the resonator technique inherently
gives more information about the two spectral modes,
from which it is possible to derive the whole two-mode
covariance matrix [31,32] and, therefore, perform the
reconstruction of any two-mode Gaussian state.
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The corresponding spectral noise power is

SRDð�Þ ¼ gþð�ÞðE� þ E�� þ 2Þ þ g�ð�ÞðE� � E��Þ
þ grð�Þð�2p̂þ þ �2q̂� ��2p̂� � �2q̂þÞ
þ gið�ÞðCp̂þq̂þ � Cp̂�q̂�Þ þ�2Ĵu þ �2Ĵv;

(10)

where g�¼ðjR�j2�jR��j2Þ=2 stands for the sum or sub-
traction of resonator response and gr and gi are real func-
tions of� defined by gr þ igi ¼ R�R��=2. Vacuum noise

contributions are �2Ĵuþ�2Ĵv¼1�jR�j2�jR��j2.
The different g being known functions of �, it is pos-

sible to retrieve their four coefficients from a least-squares
fit to the experimental data. Resonator detection offers in
particular the ability to pinpoint quantum states showing
strong energy imbalance between spectral sideband modes.
The reason for that is the introduction not only of disper-
sion by the optical resonator, but also of frequency-
dependent modal attenuation. Apart from photodetector
efficiency, modal coupling with the resonator is the only
factor to limit the quantum efficiency of measurement, just
in the same way that the overlap with the LO mode limits
the efficiency of homodyne detection.

In our experiment, we generate a quantum state possess-
ing an energy imbalance that is likely to benchmark the
differences between homodyne and resonator detection. It
is produced in two steps, as depicted in Fig. 1. First, two
spectral modes are displacedwith the aid of an electro-optic
modulator (EOM) to produce coherent states with complex

conjugate amplitudes, jc 1i ¼ D̂!0��ð��ÞD̂!0þ�ð�Þj0i ¼
j��i!0��j�i!0þ�, where � ¼ j�jei�. This state vector

shows balanced spectral energy distribution. Second, an
auxiliary optical resonator, called the asymmetry resona-
tor, produces an energy imbalance between spectral
modes by attenuating one of them in reflection. In our
case, the asymmetry resonator is locked to resonance
with mode !0 ��, and the quantum state becomes

jc 2i ¼ j�0�i!0��j�i!0þ�, where �
0 ¼

ffiffiffiffiffiffi
R0
0

q
�.

The quantum state preparation and measurement are
illustrated in Fig. 1. The input laser beam at 532 nm is
mode cleaned by a filter cavity. The same signal used for
EOMmodulation is employed as an electronic reference in
the measurement of quantum noise, with frequency � ¼
17 MHz [16,33]. Spectral analysis of the photocurrent is
performed with 600 kHz bandwidth. Photodetector effi-
ciency is 95%. Each intermediate step jc 1i and jc 2i for
the quantum state preparation of �̂ is experimentally veri-
fied. Although we employ resonator detection at this stage,
homodyne detection would find the same measurement
results, since only first-order moments appear and all
second-order moments are either shot noise or null.
Data are presented in Fig. 2. In the first step, quadrature

state averages on jc 1i relative to the standard quantum
level are shown in Fig. 2(a) as functions of �. Quadrature
mean values are obtained by theoretical fits of quantum
state averages of Eq. (8) to the data. Amplitude and phase
quadratures alternate with � in pairs as projections of � ¼
hp̂!0þ�i1 þ ihq̂!0þ�i1 and �� ¼ hp̂!0��i1 � ihq̂!0��i1.
Complex conjugate displacements are attested to by
the data. In the second step, the asymmetry resonator
produces state jc 2i with an energy imbalance. Reflection
at resonance is R0

0 ¼ 0:12ð2Þ, and bandwidth is 4.1

(2) MHz. Displacement amplitudes for both spectral modes
can be observed in Fig. 2. While one spectral mode

FIG. 1 (color online). Experimental setup. State preparation
(solid green beam): An EOM displaces spectral modes, and an
asymmetry resonator attenuates one of them. State detection:
Either homodyne (dotted blue beam) or resonator detection
(dashed red beam) is employed. A flip mirror and blocking of
LO are used to choose between the two types of quantum
measurement.

(a) (b)

FIG. 2 (color online). Measured expectation values of spectral
quadrature observables as functions of displacement angle �.
Left: Quantum state jc 1i with a balanced energy distribution.
Right: Quantum state jc 2i with a spectral energy imbalance.
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presents hp̂!0þ�i2 � 19 at maximum, the other shows

hp̂!0��i2 � 10, attesting to an energy imbalance ratio of

E!0��=E!0þ� � 0:28.

We seek to create a state with an imbalance in the
second-order moments. This is achieved by randomizing
the amplitudes and phases of the displacements, by driving
the EOM with Gaussian noise as the input. This procedure
scrambles the displacement mean values and produces field
fluctuations with the desired properties. The desired bench-

mark quantum state �̂ ¼ R
d2�e�ðj�j2=j�0j2Þjc 2ihc 2j bear-

ing a modal energy imbalance, where j�0j is the typical
modulation energy, is thus generated. For each single
mode, �̂ is a thermal state. We then measure the benchmark
quantum state �̂ with homodyne and resonator detection
schemes (Fig. 1). For comparison purposes, we also pre-
pare a reference thermal state �̂r showing a balanced
energy distribution, by amplitude randomization of jc 1i
in the form �̂r ¼

R
d2�e�ðj�j2=j�0j2Þjc 1ihc 1j.

Experimental results for the symmetric state �̂r using
both techniques are presented in Fig. 3. Data with homo-
dyne detection appear at the top right. Fringe contrast
exceeds 91%. The solid line (labeled HD) depicts the
theoretical fit of Eq. (6) to the data. The insets depict the
Wigner functions of individual spectral modes associated
with measured operator moments, yielding a visual
representation of the measured single-mode covariance
matrices.

At the bottom left, we observe resonator detection data
obtained from a symmetric quantum state produced in a
similar manner. The only difference is the increase in mean
energy to facilitate the comparison between techniques
in our particular implementation. Resonator bandwidth is
� ¼ 6:0ð3Þ MHz, mode coupling efficiency is 93.5(1.0)%,
and R0 ¼ 0:04ð2Þ. The solid line (labeled RD) represents a
theoretical fit of Eq. (10) to the data (taking into account
that mode coupling efficiency slightly modifies the equa-
tion). The dashed line (HD) represents noise as it would be
observed with resonator detection in case only moments
available to homodyne detection had been retrieved. Both
curves provide equally good fits.
We see in this first series of measurements that both

techniques are able to recover correctly the quantum state
prepared, as established by the Wigner functions in the
insets. Resonator and homodyne detection find compatible
results for �̂r, meaning that no spectral energy imbalance is
necessary to describe the quantum state.
Next, measurements of the benchmark quantum state �̂

are shown in Fig. 4 for both techniques. Homodyne detec-
tion (top right) retrieves the same qualitative shape of
quantum noise as in Fig. 3, as emphasized by theoretical
curve fittings of Eq. (6) to the data. Essentially, single-
mode subspaces of �̂ appear to homodyne detection as
balanced attenuated versions of �̂r. The insets at the top
left show that two different thermal states are mistakenly
identified as carrying the same mean energy, an assumption
tacitly made whenever quantum noise is observed with
spectral homodyne detection. The technique is insensitive
to an energy imbalance between spectral modes.

FIG. 3 (color online). Measurements of spectral quantum noise
produced by the balanced quantum state �̂r. Top: Homodyne
detection, as a function of ’. Bottom: Resonator detection, as a
function of �. Solid lines (‘HD’ on top and ’RD’ on bottom) are
theoretical fits to the data. Dashed line on the bottom (‘HD-like’)
represents the theoretical noise curve of Eq. (10) as it would
appear in resonator detection using only moments obtainable
with homodyne detection.

FIG. 4 (color online). Measurements of spectral quantum noise
produced by the imbalanced quantum state �̂. Curves and labels
follow Fig. 3.
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Data acquired with resonator detection appear at the
bottom left. The solid line represents a theoretical fitting
of Eq. (10) to the data. The dashed line shows quantum
noise as it would appear if only the moments measured
with homodyne detection were available, for comparison.
Equivalently, this also shows how a quantum state showing
a balanced modal energy would produce a symmetric noise
curve around resonance. The solid and dashed curves show
a strong disagreement, establishing the need to invoke a
strong modal energy imbalance to explain the data on �̂.
The experimental signature is clear at� � �2:6, when the
optical resonator replaces one of the spectral modes of
interest by vacuum. At � � �2:6, the resonator reflects
the populated spectral mode and transmits the attenuated
mode, causing no perceptible change to the quantum noise.
The situation is reversed, however, at � � 2:6, and a large
dip can be seen in the quantum noise. The Wigner func-
tions show that both �̂r and �̂ are correctly identified with
resonator detection.

In conclusion, we have shown that resonator detection
allows one to collect more information about the two-mode
spectral quantum state than homodyne detection. In par-
ticular, resonator detection is able to detect energy imbal-
ances between sideband modes’ fluctuations. Any quantum
state spanning over the two-sideband modes can be exactly
reconstructed. As a complete measurement technique, it
also allows an experimental determination of state purity,
in contrast to the intrinsically imperfect spectral homodyne
detection. In order to efficiently implement quantum
information protocols with the continuous variables of
multimode spectral fields, one needs to use superior mea-
surement techniques, such as resonator detection.
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