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Empirical evidence suggests that most urban systems experience a transition from a monocentric to a
polycentric organization as they grow and expand. We propose here a stochastic, out-of-equilibrium
model of the city, which explains the appearance of subcenters as an effect of traffic congestion. We show

that congestion triggers the instability of the monocentric regime and that the number of subcenters and

the total commuting distance within a city scale sublinearly with its population, predictions that are in
agreement with data gathered for around 9000 U.S. cities between 1994 and 2010.
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As cities grow, they evolve from monocentric organiza-
tions where all the activities are concentrated in the same
geographical area—usually the central business district—
to more distributed, polycentric organizations [I-8].
Traditional approaches in spatial economics have
attempted to describe the phenomenon within the frame-
work of equilibrium models of the city [9,10]. These
models are traditionally based on the concept of agglom-
eration economies—to explain why economical activities
tend to group—and the spatial distribution of wages and
rents across the urban space. However, these approaches
fail at giving a satisfactory quantitative account [11,12] of
the polycentric transition of cities. First, they describe a
city as being in an equilibrium characterized by static
spatial distributions of households and business firms.
However, the equilibrium assumption is unsupported as
cities are out-of-equilibrium systems and their dynamics
is of particular interest for practical applications [12].
Second, these models integrate so many interactions and
variables that it is difficult to understand the hierarchy of
processes governing the evolution of cities, which ones are
fundamental and which ones are irrelevant. Yet, traffic
congestion is not explicitly taken into account in the exist-
ing models, despite being mentioned in the economics
literature as a possible reason for the polycentric transition
[6]. Lastly, the models do not make any quantitative pre-
diction and are therefore unsupported by data. We present
in this Letter a stochastic, out-of-equilibrium model of the
city which relies on the assumption that the polycentric
structure of large cities might find its origin in congestion,
irrespective of the particular local economic details. We are
able to reproduce many stylized facts, and, most impor-
tantly, to derive a general relation between the number of
activity centers of a city and its population. Finally, we
verify this relation against the employment data from
around 9000 cities in the U.S. between 1994 and 2010.

Following recent interdisciplinary efforts to construct
a quantitative description of cities and their evolution
[12-18], we deliberately omit certain details and focus
instead on basic processes. We thereby aim at building a
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minimal model which captures the complexity of the sys-
tem and is able to account for qualitative as well as
quantitative stylized facts. The model we propose is by
essence dynamical and describes the evolution of cities’
organization as their populations increase. We focus on car
congestion—mainly due to journey-to-work commutes—
and its effect on the job location choice for individuals.
According to Fujita and Ogawa’s classical model [9] in
spatial economics, an individual living at location i will
choose to work at the location j that maximizes the net
income after the deduction of rent and commuting costs [9]

Zy = W(j) — Cgli) = Cr(i, j), )

where W(j) is the average wage paid by business firms
located at j (and thus varies from one location to another),
Cg(i) is the land rent at i, and Cy(i, j) is the commuting
cost between i and j. The wage and the land rent result
from the interplay between the households’ and compa-
nies’ locations, agglomeration effects being taken into
account. The commuting cost, on the other hand, does
not usually take congestion into account and is taken
proportionally to the Euclidean distance Cr(i, j) = td;;
(where ¢ is the transportation cost per unit of distance) in
most studies.

The time scales involved in the evolution of cities are
usually such that the employment turnover rate is larger
than the relocation rate of households. On a short time
scale, we can thus focus on the process of job seeking
alone, leaving aside the problem of the choice of residence.
In other words, we assume the coupling between both
processes to be negligible: we assume that each inhabitant
newly added to the city has a random residence location
and we concentrate on understanding how such an inhab-
itant chooses its job among a pool of N, potential activity
centers (which we suppose are also randomly distributed
among the city). The active subcenters are then defined as
the subset of potential centers, which have a nonzero
incoming number of individuals. As a result of these
assumptions, a worker living at i will choose to work at
the center j such that the quantity

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.111.198702

PRL 111, 198702 (2013)

PHYSICAL REVIEW LETTERS

week ending
8 NOVEMBER 2013

Ziy = W) = Cr(i, j) 2

is maximum.

We now discuss the form of the two terms W(j) and Cr.
The problem of determining the (spatial) variations of the
average wage W(j) at location j is very reminiscent of
some problems encountered in fundamental physics.
Indeed, the wage depends on many different factors rang-
ing from the type of company, the education level of the
inhabitant, the level of agglomeration, etc., and in this
respect is not too different from quantities that can be
measured in a large atom made of a large number of
interacting particles. In this situation, physicists found
out that although it is possible to write down the corre-
sponding equations, not only is it impossible to solve them,
but it is also not really useful. In fact, they found out [19]
that a statistical description of these systems relying on
random matrices could lead to predictions that agree with
experimental results. We wish to add in spatial economics
this idea of replacing a complex quantity such as wages,
which depends on so many factors and interactions, by a
random one. We therefore decide to account for the inter-
action between activity centers and people by taking the
wage as proportional to a random variable 7; € [0, 1] such
that W(j) = sn;, where s defines the maximum attainable
average wage in the considered city.

As for the transportation cost Cr(i, j), we choose it to be
proportional to the commuting time between i and j. In a
typical situation where passenger transportation is domi-
nated by personal vehicles, this commuting time not only
depends on the distance between the two places but also
on the traffic between i and j, the vehicle capacity of the
underlying network, and its resilience to congestion. The
Bureau of Public Road formula [20] proposes a simple
form taking all these factors into account. In our frame-
work, it leads to the following expression for the commut-
ing costs:

Caij) = tdy| 1 + (%)“] 3)

where T; is the traffic per unit of time between 7 and j, and
c is the typical capacity of a road (taken constant here). The
quantity w is a parameter quantifying the resilience of the
transportation network to congestion. We further simplify
the problem by assuming that the traffic 7;; is only a
function of the subcenter j and therefore write T;; =
T(j), the total traffic incoming in the subcenter j (see
Supplemental Material [21] for a short discussion).

In summary, our model is defined as follows. At each
time step, we add a new individual i located at random in
the city, who will choose to work in the activity area j
(among N, possibilities located at random) such that the

quantity
di' T()\»
Zij:"]j_g[l"‘(ij)) ] “4)

is maximum (we omitted irrelevant multiplicative factors).
The quantity € = s/t is interpreted as the maximum
effective commuting distance that people can financially
withstand.

Depending on the relative importance of wages, dis-
tance, and congestion, the model predicts the existence of
three different regimes: the monocentric regime (top
Fig. 1), the distance-driven polycentric (middle Fig. 1)
regime, and the attractivity-driven polycentric (bottom
Fig. 1) regime.

From now on, we will assume that € is large enough so
that a monocentric state exists for small values of the
population. In this regime, the value of 7 prevails, and
the monocentric state evolves to an attractivity-driven
polycentric structure as the population increases (if € is
too small, the monocentric regime does not exist—see the
Supplemental Material [21] for more details on these
points). Starting from a small city with a monocentric
organization, the traffic is negligible and Z;; = n;, which
implies that all individuals are going to choose the most
attractive center (with the largest value of 7;, say 7).
When the number P of households increases, the traffic
will also increase and some initially less attractive centers
(with smaller values of 1) might become more attractive,
leading to the appearance of new subcenters characterized

FIG. 1 (color online). The monocentric (top), distance-driven
polycentric (middle), and attractivity-driven polycentric
(bottom) regimes as produced by our model. Each link repre-
sents a commute to an activity center.
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by a nonzero number of commuters. More precisely, a new
subcenter j will appear, when for an individual i, we have
Z;; > Z;. The traffic so far is 7(1) = P and T(j) =0,
which leads to the equation

nj—7j>171—7f1|:1+(;) ] 5)
We assume that there are no spatial correlations in the
subcenter distribution, so that we can make the approxi-
mation d;; ~ d;; ~ L, where L is the linear size of the city.
The new subcenter will thus be such that n; — n; is
minimum, implying that it will have the second largest
value denoted by m; = 7,. For a uniform distribution
(details of the calculation can be found in the
Supplemental Material [21], Section 2), on average
71— 12=1/N, leading to a critical value for the population

. € \1/u
P _C(LNC) . ©6)

Whichever system is considered, there will therefore
always be a critical value of the population above which
the city becomes polycentric (which can be smaller than 1,
in which case there is no monocentric regime at all, see the
Supplemental Material [21]). The monocentric regime is
therefore fundamentally unstable with regards to popula-
tion increase, which is in agreement with the fact that no
major city in the world exhibits a monocentric structure.
We note that the smaller the value of w (or the larger the
value of the capacity c¢), the larger the critical population
value P*, which means that cities with good road systems
that are capable of absorbing large traffic show a mono-
centric structure for a longer period of time.

Having established that cities will eventually adopt a
polycentric structure, we can wonder how the number of
subcenters varies with the population. We compute the
value of the population at which the kth center appears.
We still assume that we are in the attractivity-driven regime
and that, so far, k — 1 centers have emerged with n; =
Ny = ... = ni— [21], with a number of commuters
T(1), T(2),..., T(k — 1), respectively. The next worker i
will choose the center k if

Zi > Zii, 7
ik jEI[Ill,Ellc)El] ij ( )

which reads

dj d;; T(j)\»
— ik i () (L
™ jer[?,a/lil]{n*’ ¢ [1 < c ) ]} ©

The distribution of traffic T'(j) is narrow [21], which means
that all the centers have roughly the same number of
commuters 7(j) ~ P/(k — 1). As above, we also assume
that the distance between the workers’ households and the
activity centers is typically d;; ~d; ~ L. The previous
expression now reads

L P o
mm) = o )= O

Following  our  definitions,  maxX;e[; x—1(1;) = ;.
According to order statistics, if the 7;’s are uniformly
distributed, we have on average m; — 7, = (k— 1)/
(N, + 1). It follows from these assumptions that (1) the
kth center to appear is the kth most attractive one, and (2)
the average value of the population P, at which the kth
center appears is given by

Py = P(k—1)m+/e, (10)

Conversely, the number k of subcenters scales sublinearly

with population as
P \p/(u+1)
k~ (F) . (11)
It is interesting to note that this result is robust: the depen-
dence is sublinear, whatever the distribution of the random
variable 7 (see the Supplemental Material [21] for a dis-
cussion on this point). We can therefore conclude that,
probably very generally and under mild assumptions, the
number of activity subcenters in urban areas scales sub-
linearly with their populations where the prefactor and the
exponent depend on the properties of the transportation
network of the city under consideration.

A previous study [22] showed that the total miles driven
daily in a city—the “total commuting distance’—scales
with the population as L, ~ P? where y € [0.5, 1], which
the authors interpreted as cities having neither totally cen-
tralized nor totally decentralized structures. We can discuss
this result within the framework of our model in the follow-
ing way. If the system was in the pure attractivity-driven
regime, we would have L, ~ P. But, if we assume that we
are in an intermediate regime where Eq. (10) holds and
where the system exhibits spatial coherence [21], we can
write the total length of the commutes as

L

Ly~ P—. 12
tot \/]; ( )

Inverting the result from Eq. (10), we therefore get
Lo ~ pPI-B2) (13)

where 8 = (u/(u + 1)) € [0, 1]. Our model is thus con-
sistent with the fact that the total traveled miles scales with
population with a nontrivial exponent comprised in [0.5, 1].

We now test the prediction given by Eq. (10). For that
purpose, we obtained data on the number of employees per
U.S. zip code that were collected over a span of 16 years
(from 1994 to 2010) [23], as well as the population of all
cities in the U.S. between 1994 and 2010 [24]. We estimate
the number of subcenters by constructing the rank plot of
the employment density p (number of employees per km?)
for each zip code of a given urban area [5,25]. These plots
display a decay as fast as an exponential (Fig. 2), which
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FIG. 2 (color online).
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Rank plot for the employment density (in employees per km?) in Los Angeles, CA (left) and San Antonio, TX

(right) between 1994 and 2010. See the Supplemental Material [21] for more details.

implies that there exists a natural scale for the rank that we
interpret here as the typical number of activity centers. It
also implies that any reasonable method should give an
estimate of the number of subcenters of the same order of
magnitude (which would not be the case for slowly decay-
ing functions, such as power laws, for example). We first
note that for some cities—typically large ones with stable
populations (Fig. 2, left)—the employment spatial statis-
tics remained stable over the period of study. For other
cities, we observe large variation of the number of sub-
centers (Fig. 2, right). We then plot (Fig. 3) the population
P of cities (with population P > 100) versus the estimated
number of subcenters k (the dispersion in the scatter plot
probably results from the fact that different cities have
different resilience levels to congestion). On average, we
observe a power law dependence with exponent 6 =
1.56 = 0.15 (the result is robust with regards to the esti-
mate of k, see the Supplemental Material [21] for more
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FIG. 3 (color online). Scatter plot of the estimated number of
subcenters versus the population for about 9000 cities with
populations over 100 people in the U.S. The red dots represent
the average population for a given number of subcenters. We fit
this average with a power-law dependence (represented by a red
dashed line) giving an exponent § = 1.56 = 0.15 (2> = 0.87).
See the Supplemental Material [21] for more details on the
computation of k and the robustness of the results.

details). Inverting this relation gives us the number of
subcenters as a function of the population

k ~ PP, (14)

with 8 ~ 0.64. This result is strikingly in agreement with
the prediction given by our model: the number of sub-
centers in a city scales sublinearly with its population.

Using the measured value of 8 and Eq. (13), we can
estimate the exponent of the scaling of L, with the popu-
lation and find L,,, ~ P%%®, which agrees very well with the
value 0.66 measured in Ref. [22] directly on the data of the
daily total miles driven in more than 400 cities in the U.S.

While agglomeration economies seem to be the basic
process explaining the existence of cities and their spec-
tacular resilience, this study brings evidence that congestion
is the driving force that tears them apart. The nontrivial
spatial patterns observed in large cities can thus be under-
stood as a result of the interplay between these competing
processes. We believe that the present model represents an
important step towards a quantitative, predictive science of
cities. More generally, this microscopic approach is an
interesting example of an out-of-equilibrium model: it is
governed by local optimization with saturation effects,
leads to different regimes, and is characterized by nontrivial
dynamical exponents. In this respect, we believe that this
discrete approach might be of use in the study of pattern
formation in biology, which has been so far explored from a
global optimization perspective [26], or as a discrete
approach to reaction-diffusion processes with density-
dependent diffusion coefficients [27] to compute quantities
that are out of reach within the current methods.
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