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Graphene has exhibited a wealth of fascinating properties, but is also known not to be a superconductor.

Remarkably, we show that graphene can be made a conventional Bardeen-Cooper-Schrieffer supercon-

ductor by the combined effect of charge doping and tensile strain. While the effect of doping obviously

enlarges the Fermi surface, the effect of strain profoundly increases the electron-phonon coupling. At the

experimental accessible doping (�4� 1014 cm�2) and strain (�16%) levels, the superconducting

critical temperature Tc is estimated to be as high as �30 K, the highest for a single-element material

above the liquid hydrogen temperature.

DOI: 10.1103/PhysRevLett.111.196802 PACS numbers: 73.22.Pr, 74.10.+v, 74.20.Fg

Since its first making [1], graphene has fascinated the
scientific community by a seemingly endless discovery of
extraordinary properties, such as electronically the highest
carrier mobility with massless Dirac fermions [2,3], opti-
cally the largest adsorption per atomic layer in the visible
range [4], and mechanically the strongest 2D material in
nature [5]. However, graphene is not considered to be a
good superconductor. In particular, two fundamental con-
ditions of intrinsic graphene define an overall very weak
electron-phonon coupling (EPC), rendering itself not to be
a Bardeen-Cooper-Schrieffer (BCS) superconductor [6,7].
First, graphene has a pointlike Fermi surface (Dirac point)
with vanishing density of states (DOS); second, it has a
weak electron-phonon (e-ph) pairing potential. While the
first condition can be obviously modified by doping, the
second condition is not known to be amenable to change.

Several ideas related to doping have been proposed to
induce superconductivity in graphene. For example,
adsorption of alkali metal atoms on graphene has been
found to introduce large DOS around the Fermi level as
well as increase the e-ph pairing potential, and hence to
enhance the e-ph coupling (EPC) for BCS superconduc-
tivity [8]. However, the EPC enhancement is largely due to
the DOS and phonon modes of metal atoms, rather than the
intrinsic properties of graphene. A recent theoretic work
suggests that in a highly doped graphene up to the point of
the van Hove singularity the greatly increased e-e interac-
tion can induce a pairing potential in the d-wave channel,
possibly giving rise to chiral superconductivity [9,10], but
the critical superconducting transition temperature (Tc) is
unknown and likely to be low.

In this Letter, we demonstrate, using first-principles
calculations, that in combination with doping of either
electrons or holes, biaxial tensile strain can greatly
enhance the EPC of graphene in a nonlinear fashion so
as to convert it into a BCS superconductor. Most

remarkably, within the experimental accessible doping
[11] and strain [5] levels, Tc may reach�30 K, the highest
known for a single-element superconductor.
According to BCS theory [6,7], when the phonon-

mediated attraction is strong enough to overcome the
Coulomb repulsion, electrons form ‘‘Cooper pairs,’’ lead-
ing to the emergence of superconductivity below Tc. The
former is characterized by a dimensionless parameter � ¼
NFVep, where NF is the electron DOS and Vep is the mean

e-ph pairing potential at the Fermi level, the latter by a
dimensionless parameter � ¼ NFVee, where Vee is the
mean e-e repulsive potential at the Fermi level.
Superconductivity occurs for � � �, and Tc increases
with the increasing Fermi surface (more Cooper pairs are
formed) and e-ph paring potential (easier Cooper pairs are
formed). Because � is rather material insensitive (see
discussion below), generally, materials are classified into
three regimes of EPC: weak � � 1, intermediate �� 1,
and strong � > 1; a good BCS superconductor requires
� � 1.
As a promising material for the next-generation elec-

tronic devices, the EPC in graphene has been extensively
studied both theoretically and experimentally [12–15].
Because of a diminishing Fermi surface (a point for intrin-
sic graphene) and a very weak e-ph pairing potential
(because of its high Fermi temperature of the massless
carriers and high energy of the optical phonons), the EPC
in graphene is found to be very weak. This feature is
actually responsible for some of its other extraordinary
properties like extremely high electrical [16] and thermal
conductivity [17]. But on the other hand, it prevents gra-
phene from being a BCS superconductor. To increase EPC
of graphene (�), one must increase the DOS (NF) and/or
the e-ph pairing potential (Vep) at the Fermi level.

Obviously, NF can be increased by doping of either elec-
trons or holes. Figure 1(a) shows our calculated NF and �
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as a function of hole concentration (n) for a p-type gra-
phene (see Supplemental Material [18]). Both NF and �
increase with the increase of doping, and � � 0:19 at a
doping level of 6:2� 1014 cm�2 (corresponding to doping
of �1=3 of a hole per unit cell).

Because we are interested in doping levels beyond the
linear-Dirac-band regime, we expand EðkÞ around the
Dirac point to the second order [19,20], E ¼ �kþ �k2,
then we have NF ¼ ffiffiffi

n
p ðaþ b

ffiffiffi
n

p Þ�1, which gives a very
good fit to the calculated NF with a ¼ 11:93 and b ¼
�2:19, as shown in Fig. 1(a). Since � ¼ NFVep, we find

that Vep remains a constant, �0:5 eV, independent of

doping, as shown by the very good fitting of � ¼ 0:5NF

shown in Fig. 1(a). Thus, we obtain a relation of �ðnÞ for
the hole-doped graphene as

� ¼ 0:5
ffiffiffi
n

p ð11:93� 2:19
ffiffiffi
n

p Þ�1: (1)

We notice that the value of Vep � 0:5 eV is much smaller

than the typical values found in BCS superconductors, such
as 1.4 eV [21,22] for MgB2 and 3 eV [21,23] for B-doped
diamond. This means that doping is a necessary but insuffi-
cient condition to making graphene a BCS superconductor.

The above results indicate that in order to make gra-
phene a superconductor, one must find a way to increase
Vep in addition to doping. It has been shown recently that

applying biaxial tensile strain can significantly soften the
in-plane optical modes of graphene [24,25], hinting that it
may also enhance Vep and hence the EPC. To explore this

possibility, we have calculated � as a function of biaxial
tensile strain (") [26] for a hole-doped graphene at a
4:65� 1014 cm�2 doping level, as shown in Fig. 1(b).
Clearly we see � increases dramatically with the strain.
In particular, at the 16.5% of strain, � reaches as high as
1.45, entering the strong coupling regime, with a corre-
sponding value of Vep � 3:25 eV, even larger than that in

the B-doped diamond [21,23].
To understand such remarkable strain induced enhance-

ment of EPC, we first recall that McMillan has shown that
[27] � / ðh!2iÞ�1, where ! is the frequency of all the
phonon modes contributing to the EPC. Interestingly, we
found that for graphene there exists a characteristic phonon

mode (!0) that dominates the EPC. In general, the fre-
quency of this characteristic mode must change with strain
as!0ð"Þ ¼ !0ð" ¼ 0Þ þ p"þ q"2, where p and q are the
first- and second-order phonon deformation potential,
respectively; the second-order nonlinear term is needed
here because of the large strain involved. Then, we can
fit the �ð"Þ curve using an empirical formula

�ð"Þ ¼ �ð" ¼ 0Þð1þ t1"þ t2"
2Þ�2; (2)

and a very good fit is obtained with t1 ¼ �0:007, t2 ¼
�0:002, as shown in Fig. 1(b).
Next we perform a more vigorous analysis of the strain

dependence of EPC in graphene. Figure 2 shows the
Eliashberg spectral function �2Fð!Þ, which describes the
averaged coupling strength between the electrons of Fermi
energy (EF) and the phonons of energy !:

�2Fð!Þ ¼ 1

NFNkNq

X
mn

X
q�

�ð!�!q�Þ

�X
k

jgq�;mn
kþq;kj2�ðEkþq;m � EFÞ�ðEk;n � EFÞ

(3)

(a) (b)

(c) (d)

(e) (f)

FIG. 2 (color online). The Eliashberg spectral functions and
!0 as a function of strain in the hole-doped graphene.
(a) n ¼ 1:55� 1014 cm�2, (c) n ¼ 3:10� 1014 cm�2,
(e) n ¼ 4:65� 1014 cm�2 under 6% (thin black line), 14%
(medium blue line), and 16.5% (thick red line) strain. (b), (d),
and (f), !0 versus " (black dots) and !�2

0 versus " (red triangle)

for n ¼ 1:55� 1014 cm�2, 3:10� 1014 cm�2, and 4:65�
1014 cm�2. The solid lines are an empirical fit to the data.

FIG. 1 (color online). (a) NF and � of p-type graphene under
different doping level (n) calculated from first principles.
(b) �ð"Þ for the 4:65� 1014 cm�2 hole-doped graphene. The
solid lines are fits to the data.
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and the frequency-dependent EPC function [28]

�ð!Þ ¼ 2
Z !

0

�2Fð!0Þ
!0 d!0; (4)

where the phonon frequency! is indexed with wave vector
(q) and mode number (�), and the electron eigenvalue E is
indexed with wave vector (k) and the band index (m and
n), and gq�;mn

kþq;k represents the electron-phonon matrix ele-

ment. For 1:55� 1014 cm�2 [Fig. 2(a)], 3:10� 1014 cm�2

[Fig. 2(c)] and 4:65� 1014 cm�2 [Fig. 2(e)] hole doped
graphene, the Eliashberg function is found sharply peaked
at certain energy with a �-like shape. For clarity, we shade
this peak that dominates the EPC. It corresponds to the
shear horizontal optical in-plane C-C stretching mode. As
the tensile strain increases, on the one hand, the shaded
peak moves towards lower energy, reflecting the softening
of this particular optical mode [24]; on the other hand, the
shaded peak value is intensified. From Eq. (4), we see that
both the redshift (decreasing !) and the increase of peak
intensity [increasing �2Fð!Þ] will increase �.

The spectral features in Figs. 2(a), 2(c), and 2(e) suggest
that the strain induced phonon softening plays a key role
in the strain enhanced EPC. To further quantify the �� "
relation, we define a characteristic phonon mode (!0) by
averaging over all phonon modes weighted by the
Eliashberg spectral function �2Fð!Þ,

!0 ¼ h!2i1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

d!!�2Fð!Þ=
Z d!�2Fð!Þ

!

s
; (5)

i.e., each phonon mode is weighted by its EPC strength,
so that the calculated !0 represents the average phonon
mode contribution to �. The calculated results (data points)
of !0 as a function of strain are shown in Figs. 2(b), 2(d),
and 2(f) for the 1:55� 1014 cm�2, 3:10� 1014 cm�2, and
4:65� 1014 cm�2 hole-doped graphene, respectively.
Clearly, the !0 decreases with the increasing " and can
be fitted nicely by !0ð"Þ ¼ !0ð" ¼ 0Þ þ p"þ q"2, as
mentioned above.

Also plotted in Figs. 2(b), 2(d), and 2(f) are � as a
function of !�2

0 , illustrating the scaling relation of ��
!�2

0 . Thus, we arrived at the empirical formula of Eq. (2)

used to fit the data in Fig. 1(b). The exponent �2 in the
��!0 relation is more exotic, and serves as the key to
understanding the nonlinear enhancement of EPC by strain
in graphene. In view of the �-like shaped Eliashberg
function that dominates the EPC (Fig. 2), we can assume
that the characteristic phonons can be approximated by the
Einstein model, all having the same energy !0. As a non-
polar centrosymmetric crystal, the only EPC type in gra-
phene is the deformation potential interaction [28]

jgq�kþq;kj2 ¼ jhkþ qjDq��ujkij2 ¼
jhkþ qjDq�jkij2

2M!0

;

(6)

whereDq� is the deformation potential operator associated

with the phonon mode (q, �) and �u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2M!0Þ

p
is the

zero-point oscillation amplitude of a quantum particle with
mass M.
Considering that � is defined by the EPC-induced re-

normalization of electron energy spectrum around the
Fermi surface, �� �EðkÞ=½EðkÞ � EðkFÞ�, we roughly
determine the electronic energy shift around the Fermi
surface by applying a simple second-order perturbation:

�Ek � X
q;�

jgq�kþq;kj2
E0
kþq � E0

k

�ðE0
kþq � E0

k �!0Þ / 1

!2
0

: (7)

And again, we arrive at ��!�2
0 . Now, we see this relation

has two origins. One!�1
0 factor comes from the zero-point

oscillation amplitude, i.e., softer phonons inducing larger
deformation; the other !�1

0 factor comes from the energy

denominator in the perturbation theory, i.e., softer phonons
inducing stronger mixing between different electronic
states around the Fermi surface. The former is reflected
by the increased shaded peak value in the Eliashberg
spectral function under strain (Fig. 2); the latter corre-
sponds exactly to the 1=! scaling of �ð!Þ [Eq. (4)].
Combining Eqs. (1) and (2), we derive an empirical

function of �ðn; "Þ for the p-type graphene,

�ðn; "Þ ¼
ffiffiffi
n

p
11:93� 2:19

ffiffiffi
n

p 0:5

ð1� 0:007"� 0:002"2Þ2 ;
(8)

which is applicable to a wide range of doping and strain. It
is well known that charge doping induces a hardening of
zone boundary phonon modes in graphene [29]. However,
our first-principles calculations show that this effect is
negligible compared to the strain induced phonon soften-
ing (see Supplemental Material, Fig. S2 [18]). Therefore,
in deriving the empirical function of �ðn; "Þ, we approxi-
mately neglected the slight change of the averaged phonon
frequency (!0) under different doping level. Equation (8)
underlines explicitly the combined effects of doping and
strain that greatly enhance the EPC in graphene. Figure 3
shows the 3D plot of �ðn; "Þ using Eq. (8). In comparison,
some � values directly calculated from the first principles
(stars) are also shown, and the two agree well.
The greatly enhanced � by the combined effects of

doping and tensile strain, as shown in Fig. 3, have some
very interesting physical implications, including formation
of an exotic polaronic, charge density wave, and super-
conducting state. In particular, the possible superconduct-
ing state, which may occur at the limit of high doping (high
carrier density) and strain (strong e-ph pairing) levels, is
very appealing. We have calculated the critical transition
temperature for the superconducting state using the
McMillan-Allen-Dynes formula [30]:

PRL 111, 196802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 NOVEMBER 2013

196802-3



Tc ¼
@!log

1:2kB
exp

� �1:04ð1þ �Þ
���	ð1þ 0:62�Þ

�
; (9a)

!log ¼ 1035:77� 38:05"� 0:70"2; (9b)

which has been widely used to estimate Tc of carbon-based
BCS superconductors, such as fullerene [31], carbon nano-
tubes [32], and intercalated graphite [33]. !log is the log-

arithmically averaged phonon frequency, and we found
that !log is almost independent of doping but changes

with strain following the empirical relation of Eq. (9b)
[18]. �	 is the retarded Coulomb pseudopotential related
to the dimensionless parameter of screened Coulomb po-
tential � as �	 ¼ �=½1þ� lnð!e=!DÞ�, where !e and
!D are the characteristic electron and phonon energy. We
have evaluated �	 for graphene [18], which falls in the
range of�0:10–0:15, consistent with the values reported in
other carbon-related materials and most sp-electron
metals.

Using Eqs. (8) and (9) with �	 ¼ 0:115, we plot in
Fig. 4 the calculated Tc as a function of doping (n) and
strain ("), superimposed with selected data obtained from

first-principles calculations (stars). Most remarkably, at
16.5% strain, Tc reaches as high as 18.6, 23.0, and 30.2 K
for the doping level of 1:55� 1014, 3:10� 1014, and
4:65� 1014 cm�2, respectively. Such a high Tc may
appear too surprising at first, but becomes reasonable after
one compares with MgB2, a well-known BCS supercon-
ductor with a theoretically predicted Tc � 40 K [34] that is
in very good agreement with experiment [35]. The char-
acteristic values of � ¼ 1:01 and !log ¼ 56:2 meV

(453:3 cm�1) [34] of MgB2 are very comparable to ours
for the doped and strained graphene.
Because of the high electron-hole symmetry in graphene

about the Dirac point, we expect the electron and hole
doped graphene to have similar superconductivity transi-
tion under tensile strain. We have calculated � and Tc at
different tensile strains for both the 4:65� 1014 cm�2

electron- and hole-doped graphene (see Supplemental
Material, Table S1 [18]). Very similar trends in � and Tc

are found.
We note that we have simply estimated the scale of Tc by

the McMillan formula assuming an s-wave pairing. In
general, the SC pairing symmetry is related to the geome-
try of Fermi surface and the types of pairing potential.
Previous theoretical studies [36,37] have shown that more
exotic pairing symmetry, in addition to s wave might exist
in graphene, by assuming some arbitrary attractions, such
as real-space nearest-neighbor attraction [36,37] and long-
range Hubbard-like interactions [10]. Here, however, our
first-principles results suggest a ‘‘realistic’’ form of attrac-
tion mediated by theK1 phonon mode, which represents an
intervalley coupling in the momentum space. To go beyond
the scope of present study, a model analysis combined with
the density functional theory interaction parameters is
called for to better understand the pairing symmetry.
We reiterate that the superconductivity transition of

doped graphene we discover here is triggered by the
enhanced EPC under tensile strain, which is fundamentally
different from that in metal-decorated graphene [8]. The
enhancement of � in metal decorated graphene arises from
additional metal-related electronic states around the Fermi
level, which couple strongly in part with the phonon modes
of adsorbed metal atoms. In this sense, the superconduc-
tivity in metal-decorated graphene is ‘‘extrinsic,’’ arising
from additional properties of foreign metal atoms and it is
similar to their 3D counterparts, such as the intercalated
graphite [38,39] and MgB2 [22], while the superconduc-
tivity in our case is ‘‘intrinsic,’’ arising solely from the
intrinsic graphene properties modified by doping and
strain. Specifically, tensile strain hardly modifies the elec-
tronic structure except changing the dispersion of � band,
because doping remains within the � band. So the elec-
trons scattered by phonon still consist of � electrons of
graphene. Apparently, ours is also very different from the
chiral superconducting state of the exceedingly high-doped
graphene up to the van Hove singularity point [9,10].

FIG. 3 (color online). 3D plot of �ðn; "Þ calculated using
Eq. (8), and selected data (stars) calculated from first principles.

FIG. 4 (color online). 3D plot of Tcðn; "Þ calculated using
Eq. (9), and selected data (stars) calculated from first principles.
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Finally, it is important to stress that the high Tc is
achieved within the experimental accessible doping and
strain levels. Either chemical doping by adsorption [40] or
electrical doping by gating in a field effect transistor [11]
has shown doping levels above 1014 cm�2 in graphene. On
the other hand, as the strongest 2D material in nature,
experimentally graphene has been elastically stretched up
to �25% tensile strain without breaking [5]. It is also
interesting to note that a recent theoretical work shows
that either electron or hole doping can in fact further
strengthen graphene to reach even higher ideal strength
under tensile strain [25]. Therefore, it is highly reasonable
to anticipate experimental realization of high Tc super-
conducting graphene as we predicted here.

C. S. and W.D. acknowledge support by the Ministry
of Science and Technology of China (Grants
No. 2011CB921901 and No. 2011CB606405) and NSFC
(Grant No. 11074139); Z. L. and F. L. acknowledge support
by U.S. DOE-BES (Grant No. DE-FG02-04ER46148).
C. S. additionally acknowledges the Tsinghua exchange
student fund for supporting her visit of U. of Utah. The
calculations were done on the ‘‘Explorer 100’’ cluster
system of Tsinghua and CHPC of U. of Utah and DOE-
NERSC. C. S. and Z. L. contributed equally to this work.

*fliu@eng.utah.edu
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.

Zhang, S. V. Dubonos, I. V. Grigorieva, and A.A. Firsov,
Science 306, 666 (2004).

[2] K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and
A.A. Firsov, Nature (London) 438, 197 (2005).

[3] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F.
Schedin, D. C. Elias, J. A. Jaszczak, and A.K. Geim,
Phys. Rev. Lett. 100, 016602 (2008).

[4] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat.
Photonics 4, 611 (2010).

[5] C.Lee,X.Wei, J.Kysar, and J.Hone,Science321, 385 (2008).
[6] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.

106, 162 (1957).
[7] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.

108, 1175 (1957).
[8] G. Profeta, M. Calandra, and F. Mauri, Nat. Phys. 8, 131

(2012).
[9] R. Nandkishore, L. S. Levitov, and A.V. Chubukov, Nat.

Phys. 8, 158 (2012).
[10] M. L. Kiesel, C. Platt, W. Hanke, D.A. Abanin, and R.

Thomale, Phys. Rev. B 86, 020507 (2012).
[11] D. K. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805

(2010).
[12] A. C. Ferrari, Solid State Commun. 143, 47 (2007).
[13] N. B. Kopnin and E. B. Sonin, Phys. Rev. Lett. 100,

246808 (2008).
[14] M.V. Hosseini and M. Zareyan, Phys. Rev. Lett. 108,

147001 (2012).

[15] F.M.D. Pellegrino, G.G. N. Angilella, and R. Pucci, Eur.
Phys. J. B 76, 469 (2010).

[16] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S.
Fuhrer, Nat. Nanotechnol. 3, 206 (2008).

[17] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D.
Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8,
902 (2008).

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.196802 for
details of the computational method, the effect of strain
versus doping on phonon mode, !log as a function of
strain, the evaluation of �	 in graphene, and the tabulated
results of electron-doped graphene.

[19] A. C. Neto, F. Guinea, N. Peres, K. Novoselov, and A.
Geim, Rev. Mod. Phys. 81, 109 (2009).

[20] Z. F. Wang and F. Liu, ACS Nano 4, 2459 (2010).
[21] G. Savini, A. C. Ferrari, and F. Giustino, Phys. Rev. Lett.

105, 037002 (2010).
[22] J.M. An and W.E. Pickett, Phys. Rev. Lett. 86, 4366

(2001).
[23] F. Giustino, J. R. Yates, I. Souza, M. L. Cohen, and S. G.

Louie, Phys. Rev. Lett. 98, 047005 (2007).
[24] C. A. Marianetti and H.G. Yevick, Phys. Rev. Lett. 105,

245502 (2010).
[25] C. Si, W. Duan, Z. Liu, and F. Liu, Phys. Rev. Lett. 109,

226802 (2012).
[26] The biaxial strain ("xx ¼ "yy ¼ ", "xy ¼ "yx ¼ 0), i.e., an

isotropic strain in 2D, is applied by simply scaling the
lattice constant (a) as " ¼ ða� a0Þ=a0, where a0 is the
equilibrium lattice constant. It will be interesting to study
whether similar effects can occur under a uniaxial strain in
the future.

[27] W. McMillan, Phys. Rev. 167, 331 (1968).
[28] G. Grimvall, The Electron-Phonon Interaction in Metals

(North-Holland, Amsterdam, 1981).
[29] K. I. Sasaki, K. Kato, Y. Tokura, S. Suzuki, and T. Sogawa,

Phys. Rev. B 86, 201403 (2012).
[30] P. B. Allen and R. Dynes, Phys. Rev. B 12, 905

(1975).
[31] A. Oshiyama and S. Saito, Solid State Commun. 82, 41

(1992).
[32] K. Iyakutti, A. Bodapati, X. Peng, P. Keblinski, and S. K.

Nayak, Phys. Rev. B 73, 035413 (2006).
[33] M. Calandra and F. Mauri, Phys. Rev. Lett. 95, 237002

(2005).
[34] A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87,

087005 (2001).
[35] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani,

and J. Akimitsu, Nature (London) 410, 63 (2001).
[36] B. Roy and I. F. Herbut, Phys. Rev. B 82, 035429

(2010).
[37] B. Uchoa and A.H. Castro Neto, Phys. Rev. Lett. 98,

146801 (2007).
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