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We present zero-temperature first-principles calculations of elemental cerium and we compute its

pressure-volume phase diagram within a theoretical framework able to describe simultaneously both the �

and the � phases. A surprising result revealed by our study is the presence of a clear signature of the

transition at zero temperature and that this signature can be observed if and only if the spin-orbit coupling

is taken into account. Our calculations indicate that the transition line in the pressure-temperature phase

diagram of this material has a low-T critical point at negative pressures, placed very close to zero

temperature. This suggests that cerium is very close to being ‘‘quantum critical,’’ in agreement with recent

experiments.
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Below the critical temperature Tc ’ 600 K, an isostruc-
tural transition, named the �-� transition, can be induced
in cerium by applying pressure [1]. This transition is first
order and is accompanied by a sizable volume collapse.
The �-� transition was discovered in 1949 [2]. Since then,
a lot of theoretical and experimental work has been
devoted to its understanding. The great interest in this
phenomenon arises from the fact that the transition is
isostructural; i.e., the lattice structure of the system is
equal in the two phases. Furthermore, the possibility that
the underlying mechanism lies in the electronic structure
only—i.e., without it being necessary to involve other
effects—makes cerium a potential theoretical testing
ground for basic concepts of correlated electron systems.
Two main theoretical pictures are still under debate to
explain the volume collapse: the Kondo volume collapse
(KVC) [3,4] and the orbital-selective Mott transition
within the Hubbard model (HM) [5]. According to the
KVC, the transition is induced by the rapid change of the
coherence temperature across the transition boundaries,
which affect dramatically the structure of the conduction
spd electrons through the Kondo effect. According to
the HM, instead, it is the hopping between f orbitals that
changes drastically across the transition between the �
phase (with delocalized f electrons) and the � phase
(with localized f electrons), as for the Mott transition in
the Hubbard model.

Consistently with both the HM and the KVC pictures,
the f electrons are strongly correlated both in the � and
in the � phases. This fact is clearly indicated, e.g., by the
photoemission spectra, which are known experimentally
[6–8] and theoretically [9–11]. Despite this similarity,
there is a key difference between these two models: while
the KVC attributes a very important role to the interplay

between the localized 4f orbitals and the itinerant spd
conduction bands, the itinerant electrons are ‘‘spectators’’
in the HM picture.
The development of local density approximation plus

dynamical mean field theory (LDAþ DMFT) [12] results
[13–15] has successfully reproduced many aspects of
this transition, and different aspects of these studies can
be understood in both physical pictures. There are still
fundamental questions which have not been answered.
(1) What is the role of the spin-orbit interaction (SOC)
for the volume collapse? (2) What is the fate of the
pressure-temperature transition line at very low tempera-
tures [16–18]? (3) Can a first-principles-based theory be
made computationally efficient so as to access both the �
and the � cerium at zero temperature?
Because of the complexity of the problem, it is clear

that, in order to be conclusive, a theoretical explanation of
the �-� transition needs to be supported by first-principles
calculations which not only are able to take into account
both the details of the band structure and the strong-
correlation effects but are also able to evaluate precisely
the pressure-volume phase diagram. For this purpose, it is
crucial that the computation of the total energy is essen-
tially free of numerical error. Another key requirement is
that the two phases are treated within the same theoretical
framework. In this work, we use a combination of density
functional theory and the Gutzwiller approximation
(LDAþ GA) [19–23], which satisfies all of these require-
ments. Recently, we have established formally [24] that
this method can be viewed as an instance of LDAþ
DMFT, using slave bosons (or the Gutzwiller method) as
the DMFT impurity solver [14]. This insight enabled a
new efficient charge self-consistent implementation of
the LDAþ GA method on top [25] of the Linearized
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Augmented Plane Wave Density Functional Theory code
WIEN2K [26], which removes many of the approxima-

tions inherent in previous studies. As a benchmark, in the
Supplemental Material [27], we also present LDAþ
DMFT calculations for cerium. The very good agreement
between the two methods gives us further confirmation that
the results presented in this work are indeed reliable.

We employ the general Slater-Condon parametrization of
the on-site interaction, assuming a Hund’s coupling con-
stant J ¼ 0:7 eV [28]. Since the value U of the interaction
strength is generally difficult to establish accurately (due
to its strong sensitivity to the screening effect), in this work,
we perform calculations scanning different values of U.
Our calculations are all performed at zero temperature.

In the upper panels of Fig. 1, we illustrate our theoretical
energy-volume diagrams for different values of U. The
results are shown both by taking into account the SOC
(left panels) and by neglecting it in the calculation (right
panels). The corresponding pressure-volume curves,
obtained from P ¼ �dE=dV, are shown in the lower
panels, in comparison with the experimental data at room
temperature of Refs. [29,30]. The agreement with the

experiment is good, especially for U ¼ 6 eV, which is
the value that reproduces the experimental equilibrium

volume Veq ’ 28:5 �A3=atom [29–31] (see the inset of the

upper-left panel). The small discrepancies at larger V are
likely, at least in part, due to the entropy, as our calcula-
tions were performed at zero temperature. Note that
U ¼ 6 eV was also previously computed within the
constrained LDA method [9,32], which gives us further
confidence that this is the optimal value of the correlation
strength for cerium.
Remarkably, we observe a change of sign in the bulk

modulus K ¼ �VdP=dV < 0—which is the signal of a
first-order isostructural transition—for anyU�Uc’5:5eV
(see the pressure-volume curves in the lower-panel insets
of Fig. 1), while at U ¼ Uc, the transition becomes second
order, with a K ¼ 0 minimum bulk modulus. A signature
of the transition, i.e., a local minimum of the bulk modulus,
is still present for any interaction strength; see the black
diamonds in the inset of the lower-left panel of Fig. 1. We
point out that this feature of the pressure-volume curve is
observed only if the SOC is taken into account—which is a
clear indication of its key role in the physics underlying the
�-� transition. Note also that for U ¼ 6 eV, the crossover
point occurs at P ’ �2 Gp, which is close to the expected
zero-temperature value Pexp ’ �1 Gp extrapolated from

the experimental data of Ref. [1].
In order to better understand the role of the SOC, we

consider the local f entanglement entropy

Sf½�f� ¼ �Tr½�f ln�f�; (1)

where �f is the reduced density matrix of the system in the

f local subspace. The value of Sf is a measure of howmuch

the f electrons are entangled with the rest of the environ-
ment. In Fig. 2, the behavior of Sf is shown as a function of

the volume for two values of U. Remarkably, if (and only
if) the SOC is taken into account, a clear crossover is
visible in the correspondence of the signature of the vol-
ume collapse, i.e., in the correspondence of the minimum
of the bulk modulus K, which is indicated by black
diamonds in the inset of the lower-left panel of Fig. 1.
In the � phase, as expected, Sf is not sensitive to the

spin-orbit splitting, indicating that the local fluctuations
induced in the f local space by the coupling with its
environment are very large. By increasing the volume,
the fluctuations between the J ¼ 5=2 f1 subspace and
the other local configurations are increasingly suppressed.
The crossover point identifies the situation in which the
above-mentioned fluctuations are sufficiently small to be
hampered by the spin-orbit splitting. This is clearly dem-
onstrated by the fact that in the � phase, when the SOC is
taken into account, Sf * ln6—where 6 ¼ 2� 5=2þ 1 is

the degeneracy of the 5=2 eigenspace at nf ¼ 1. We point

out that the above-mentioned local fluctuations are gener-
ated only by the entanglement and so are present even
if the actual temperature of the system is zero—as in our

FIG. 1 (color online). Total energy as a function of the volume
(upper panels) and corresponding theoretical pressure-volume
curves for U ¼ 5, 6 eV, J ¼ 0:7 eV, in comparison with the
experimental data (lower panels). The experimental data relate to
measurements at room temperature (black circles from Ref. [29],
red diamonds from Ref. [30], and green squares from Ref. [35]),
while our theoretical calculations are all obtained at zero tem-
perature. The curves in the insets are obtained for all U’s from
4.5 to 6.5 eV (from lower to higher total energies) with steps of
0.5 eV. Our results are shown both with (left panels) and without
(right panels) taking into account the spin-orbit coupling. The
vertical shaded lines in the upper insets indicate the experimental
volume at ambient pressure. The horizontal dotted lines in the
lower-left panel and the black diamonds in its inset indicate the
pressures where the bulk modulus K ¼ �VdP=dV is minimum.
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calculations. As we are going to show, the main source of
entanglement is the hybridization between the f and the
spd electrons.

A further insight of the problem can be achieved by
inspecting the ground-state expectation values of the non-

local energy components of the effective Hamiltonian Ĥ
whose ground state provides our theoretical solution

[12,21]. The nonlocal part T̂ of Ĥ can be concisely
represented as

T̂ ¼ T̂ff þ T̂fc þ T̂cc; (2)

where the symbol c represents all of the spd conduction

electrons, and T̂ff, T̂fc, and T̂cc represent the nonlocal

‘‘hopping’’ terms between f-f, f-c, and c-c electrons,
respectively. In Fig. 3, the ground-state expectation values

of the f-c and the f-f components of T̂ are shown for
two values of U. These energies represent the Kondo and
the Hubbard energy scales of the problem, respectively.
In agreement with the KVC model of the transition, we
observe that the Kondo energy scale is about 1 order of
magnitude bigger than the Hubbard energy scale, which is
already very small before the crossover point, as expected
[33]. This confirms that the main source of entanglement

between the f local space and its environment is the
hybridization between the f and the spd electrons. Note
that when the SOC is taken into account, a more rapid
suppression of the Kondo energy scale is observed
concomitantly with the crossover region.
We have already observed that even though the behavior

of the entanglement entropy (and of the Kondo energy
scale) is qualitatively the same for all U’s, no transition
can be found for U � Uc ’ 5:5 eV at zero temperature;
see Figs. 1 and 2. The reason is the following. The local
crossover, which induces a reduction of the bulk modulus
of the system, occurs at lower volumes for larger U; see
the black diamonds in the inset of the lower-left panel of
Fig. 1. On the other hand, the bulk modulus becomes larger
at smaller volumes (even when the SOC is not taken into
account); see the pressure-volume curves in the lower
panels of Fig. 1. For this reason, if U is large enough, it
becomes impossible for the SOC to make the bulk modulus
negative, i.e., to induce the volume collapse. It follows that,
in principle, there are two possible scenarios: (i) the �-�
transition also exists at zero temperature, or (ii) the tran-
sition line ends at a certain finite critical temperature (at
negative pressures). As we mentioned before, U ’ 6 eV—
which is indeed very close to Uc—is a physically reason-
able value for cerium. This suggests that cerium is placed
essentially in the middle between the two above-mentioned
scenarios, i.e., that the �-� transition line ends very close
to zero temperature. Note that this finding is in qualitative
agreement with the experimental results of Ref. [34].
It is useful to examine how the local crossover induced

by the SOC reflects on the quasiparticle renormalization
weights and the on-site configuration probabilities. In the
first panel of Fig. 4 are illustrated the averaged quasi-
particle renormalization weights Z of the 7=2 and 5=2 f

FIG. 2 (color online). Local entanglement entropy of the f
electrons as a function of the volume per atom of the system for
U ¼ 5 eV (upper panel) and U ¼ 6 eV (lower panel) at fixed
J ¼ 0:7 eV. The entanglement entropy is reported both for the
case with (lines) and without (dots) the SOC. The horizontal
lines correspond to 14, which is the dimension of the single-
particle local space of the f electrons, and to 6 ¼ 2� 5=2þ 1,
which is the degeneracy of the 5=2 f electrons within the single-
particle local space. The vertical solid lines indicate the signature
of the transition in the pressure-volume diagram, and the dotted
vertical lines indicate the boundary of the �-� transition (which
occurs only for U � Uc ’ 5:5 eV) according to the equal-area
construction [36].

FIG. 3 (color online). Ground-state expectation values of the
f-c and the f-f effective hopping energies as a function of
the volume per atom of the system. The energies are reported for
U ¼ 5 eV (left panel) and U ¼ 6 eV (right panel) at fixed
J ¼ 0:7 eV, both for the case with (lines) and without (dots)
the spin-orbit coupling. The vertical solid lines indicate the
signature of the transition in the pressure-volume diagram, and
the dotted vertical lines indicate the boundary of the �-�
transition (which occurs only for U � Uc ’ 5:5 eV) according
to the equal-area construction [36].
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electrons—which are significantly different because of the
spin-orbit effect. As expected [33], the f electrons are
correlated (Z is significantly smaller than 1) even in the
� phase, and the two Z’s monotonically decrease by
increasing the volume at higher pressures. Nevertheless,
they develop a qualitatively different behavior at the cross-
over point. While the 5=2 electrons undergo a clear cross-
over toward a localized phase ‘‘disentangled’’ by the
conduction electrons, the 7=2 electrons remain screened,
but they rapidly disappear afterwards, so that they are
essentially absent in the � phase; see the second panel of
Fig. 4. As shown by the f configuration probabilities in the
third panel of Fig. 4, the SOC speeds up the formation of
the 4f1 local moment. In other words, the SOC acts as a
‘‘catalyst,’’ which favors the disentanglement between the
4f electrons and the conduction electrons.

In conclusion, we have performed first-principles calcu-
lations on cerium using a new efficient implementation
of the LDAþ GA method. For the physical value of U
in cerium U ’ 6 eV [9,32], a sharp crossover is observed
in many physical quantities around the volume where the
bulk modulus is minimum. This finding is robust against
changes in U, but the details are different. For U <Uc, at
T ¼ 0, there is a first-order transition at a given negative

value of the pressure, while for U >Uc, this transition
becomes a sharp crossover. At Uc, there is a second-order
quantum critical point in the phase diagram. Our estimate
for the critical interaction strength Uc ’ 5:5 eV is very
close to the physical value of the interaction strength in
cerium. This finding suggests that elemental cerium is a
critical element, consistently with the experiments [34].
Our results demonstrate the importance of the SOC for the
volume collapse in cerium, which is neatly captured by the
rapid variation of the entanglement entropy of the f elec-
trons in the region around the minimum of the bulk modu-
lus. In the � phase, at small V, the f levels are strongly
hybridized with the conduction electrons, and the quasi-
particle weights and the pressure are only weakly depen-
dent on the spin-orbit interaction. In this regime, the
system effectively behaves as if the f-level degeneracy
was of the order of magnitude of 14. In the � phase, at
large V, the spin-orbit splitting becomes more important
and substantially reduces the effective f-level degeneracy.
The fact that the quasiparticle weight in the � phase is
much smaller when the SOC is taken into account (see
Fig. 4) can be interpreted as a consequence of the above-
mentioned reduction of effective f-level degeneracy—a
well-known effect in the theory of the single-ion Kondo
impurity. As in the early Kondo volume-collapse theory [3],
@Z=@V contributes to the pressure. However, some quali-
tative features of our solution, such as the form of the
pressure-volume phase diagram, show that other physical
elements, such as the changes in the charge density induced
by the correlations, also have to be included in realistic
theories of this material. The physical mechanism under-
lying the �-� transition in cerium is a possible paradigm
for the volume-collapse transitions in 4f and 5f systems,
which is a major challenge in condensed matter physics.
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(Amsterdam) 133B+C, 129 (1985).

[31] F. H. Ellinger and W.H. Zachariasen, Phys. Rev. Lett. 32,
773 (1974).

[32] A. McMahan, C. Huscroft, R. Scalettar, and E. Pollock,
J. Comput.-Aided Mater. Des. 5, 131 (1998).

[33] A. P. Murani, S. J. Levett, and J.W. Taylor, Phys. Rev.
Lett. 95, 256403 (2005).

[34] J. C. Lashley, A. C. Lawson, J. C. Cooley, B. Mihaila,
C. P. Opeil, L. Pham, W. L. Hults, J. L. Smith, G.M.
Schmiedeshoff, F. R. Drymiotis et al., Phys. Rev. Lett.
97, 235701 (2006).

[35] M. J. Lipp, A. P. Sorini, J. Bradley, B. Maddox, K. T.
Moore, H. Cynn, T. P. Devereaux, Y. Xiao, P. Chow, and
W. J. Evans, Phys. Rev. Lett. 109, 195705 (2012).

[36] L. D. Landau and E.M. Lifshitz, Statistical Physics
(Pergamon, London, 1958).

PRL 111, 196801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 NOVEMBER 2013

196801-5

http://dx.doi.org/10.1016/0375-9601(82)90689-2
http://dx.doi.org/10.1016/0375-9601(82)90689-2
http://dx.doi.org/10.1080/14786439808206574
http://dx.doi.org/10.1103/PhysRevLett.52.2180
http://dx.doi.org/10.1103/PhysRevLett.52.2180
http://dx.doi.org/10.1103/PhysRevB.44.8304
http://dx.doi.org/10.1103/PhysRevLett.55.1518
http://dx.doi.org/10.1103/PhysRevLett.55.1518
http://dx.doi.org/10.1103/PhysRevLett.87.276403
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevB.67.075108
http://dx.doi.org/10.1103/PhysRevB.67.075108
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevLett.94.036401
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.81.235
http://dx.doi.org/10.1103/RevModPhys.81.235
http://dx.doi.org/10.1103/PhysRevLett.95.066402
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevLett.109.146402
http://dx.doi.org/10.1103/PhysRev.137.A1726
http://dx.doi.org/10.1103/PhysRevB.52.11813
http://dx.doi.org/10.1103/PhysRevB.79.075114
http://dx.doi.org/10.1103/PhysRevB.79.075114
http://dx.doi.org/10.1103/PhysRevB.77.073101
http://dx.doi.org/10.1103/PhysRevB.77.073101
http://dx.doi.org/10.1103/PhysRevB.85.035133
http://dx.doi.org/10.1103/PhysRevB.85.035133
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.196801
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.196801
http://dx.doi.org/10.1107/S0567739477000321
http://dx.doi.org/10.1107/S0567739477000321
http://dx.doi.org/10.1016/0378-4363(85)90406-1
http://dx.doi.org/10.1016/0378-4363(85)90406-1
http://dx.doi.org/10.1103/PhysRevLett.32.773
http://dx.doi.org/10.1103/PhysRevLett.32.773
http://dx.doi.org/10.1023/A:1008698422183
http://dx.doi.org/10.1103/PhysRevLett.95.256403
http://dx.doi.org/10.1103/PhysRevLett.95.256403
http://dx.doi.org/10.1103/PhysRevLett.97.235701
http://dx.doi.org/10.1103/PhysRevLett.97.235701
http://dx.doi.org/10.1103/PhysRevLett.109.195705

