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We study the dynamics of a strongly interacting bosonic quantum gas in an optical lattice potential

under the effect of a dissipative environment. We show that the interplay between the dissipative process

and the Hamiltonian evolution leads to an unconventional dynamical behavior of local number fluctua-

tions. In particular, we show, both analytically and numerically, the emergence of an anomalous diffusive

evolution in configuration space at short times and, at long times, an unconventional dynamics dominated

by rare events. Such rare events, common in disordered and frustrated systems, are due here to strong

interactions. This complex two-stage dynamics reveals information on the level structure of the strongly

interacting gas.
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Unconventional, nonexponential, relaxation dynamics
of a perturbed system towards equilibrium has attracted
a lot of interest over the decades. Already in 1847,
Kohlrausch [1] observed a stretched exponential decay in

time t, i.e., e�ðt=t0Þ� with � 2 ð0; 1Þ and t0 a positive
constant, of the discharge of capacitors fabricated from
glasses. Since then, such a decay has been observed in
many systems such as molecules and polymers [2,3],
spin glasses [4,5], nanosized magnetic particles [6], and
certainly amorphous silicon [7,8].

A broad variety of theoretical approaches has been
developed to explain the mechanism of this unconventional
relaxation dynamics [8–11]. In many of these approaches,
e.g., the treatment of the Griffiths phase in disordered spin
systems [12], rare configurations have been identified to
play a key role. These configurations have an exponentially
small probability to occur and therefore contribute mini-
mally to the short-time dynamics. However, because their
relaxation time scale is very long, these rare configurations
can dominate the long-time evolution. Rare configurations
play an important role in the relaxation dynamics of
glasses, where they give rise to stretched exponential
decays. We will thus refer to this dynamics induced by
rare events as ‘‘glasslike’’ in the following.

In this work, we uncover that also in quantum many-
body systems, such as the Bose-Hubbard model, the
dissipative coupling to a Markovian, i.e., memoryless,
environment can cause glasslike dynamics. We show that
the long-time behavior in these systems can be dominated
by rare configurations. These rare configurations are char-
acterized by a large number of atoms occupying a single
lattice site. Increasing the number of atoms on the largely
occupied site is associated with a long-time scale, since the

energetic cost of modifying this kind of configuration is
very large. Because of this long-time scale, these rare
configurations dominate the long-time dynamics, inducing
an unconventional dynamics of stretched exponential form
as shown, for the case of local number fluctuations � ¼
hn̂2j i � hn̂ji2 (where n̂j is the number operator of atoms on

site j) in Fig. 1. Additionally, the glasslike dynamics is
preceded by an algebraic relaxation process due to the
interplay of many energetically close configurations with
low particle fluctuations. Therefore, both unconventional
dynamics of this open quantum many-body system are
signatures of the complex structure of its configuration
space and energy spectrum that the dissipative term forces
the system to explore.
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FIG. 1 (color online). 1� �ð�Þ=�ð1Þ versus the square root of
rescaled time � for the interaction over the dissipative coupling
ratio U=@� ¼ 10. Numerical results of Eq. (2) are shown for
different fillings f ¼ 0:1, 0.5, 1, 3 in the direction of the arrow as
solid lines and corresponding stretched exponential fits as dashed
lines. The analytical result (6) of the diffusion equation (3) is
shown as a dot-dashed (black) line.
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The nonexponential decay is in contrast to the typical
evolution found for quantum many-body systems coupled
to a Markovian environment. In these systems, the decay is
often dominated by an exponential dynamics, such as, e.g.,
the counterintuitive Zeno effect [13–17], or the relaxation
to a desirable state driven by an artificially engineered
environment [18,19]. Only recently, the first signs of an
intriguing slowing down of the heating dynamics for inter-
acting bosonic [20–23] and fermionic [24] gases and an
algebraic decay for a specially designed environment
which imprints coherence [25] have been predicted.
However, up to now, the understanding of the large variety
of dynamical behaviors that occur in an interacting many-
body system and of its origin is still a great challenge.

We study the heating of N ultracold bosonic atoms in
an optical lattice of Ns sites with filling f ¼ N=Ns and
connectivity (number of nearest neighbors per site) z,
described by the following master equation [20,26]:

@t�̂ ¼ � i

@
½Ĥ; �̂� þDð�̂Þ: (1)

The first term describes the unitary evolution of the
density matrix �̂. This evolution is governed, in the single

Bloch band limit, by the Bose-Hubbard Hamiltonian Ĥ ¼
�J

P
hj;lib̂

y
j b̂l þ ðU=2ÞPjn̂jðn̂j � 1Þ, where hj; li denotes

pairs of neighboring sites [27,28]. The operators b̂yj and

b̂j are bosonic creation and annihilation operators on site j,

and n̂j ¼ b̂yj b̂j counts the number of atoms. The dissipator

Dð�̂Þ ¼ �
P

jðn̂j�̂n̂j � 1
2 n̂

2
j �̂� 1

2 �̂n̂
2
j Þ models the dissipa-

tive coupling to a Markovian environment via the local
density with strength �. This can be due to a noisy potential
both in space and time added to the optical lattice
[22,23,29,30]. We have restricted the description to
the lowest Bloch band of the optical lattice potential.
The validity of this approximation is discussed in the
conclusions.

In the following, we study in detail the heating dynamics

of a system, initially in its ground state with respect to Ĥ,
under the joint action of dissipation and the Hamiltonian
evolution. We concentrate on the strongly interacting
regime U � J, @�. The dissipator causes the off-diagonal
elements of the density matrix, in the following always
represented in the Fock basis, to decay towards the deco-
herence free subspace. This consists of all possible diago-
nal density matrices �̂. In the presence of the hopping term,
the heating process drives the system to a unique steady

state �̂ðt ¼ 1Þ ¼ ðÎ=MÞ, the highest entropy state [21].
Here, M is the dimension of the Hilbert space at fixed

atom number N, and Î is the identity operator. The
approach of this steady state can be described for �t � 1
by adiabatically eliminating [13,31] the small off-diagonal
elements. A closed set of classical rate equations for the
diagonal elements of �̂ is obtained [21,32,33]. The

diagonal configurations that are connected are those for
which a particle is moved from a site with occupation m0
to one of its neighbors with occupation m. The process
occurs via virtual hopping to and from an off-diagonal
element of the density matrix [33]. To study this dynamics,
we use a separable and translationally invariant ansatz
�̂ðtÞ ¼ N

j½
P

n�ðn; tÞjnihnj�, where j runs over all the

lattice sites and n over all the possible occupations of
each site. The probability distribution �ðn; tÞ of the single
site occupation evolves as

@��ðn; �Þ ¼
X

m;d¼�1

T ðn;m; dÞ½�ðm� d; �Þ�ðnþ d; �Þ

� �ðm; �Þ�ðn; �Þ�; (2)

where �¼ t=t� with t� ¼ðU2f2=2zJ2�Þ and T ðm;m0;dÞ¼
f2½ðmþ�d;1Þðm0þ�d;�1Þ�=½ðm�m0þdÞ2þð@�=UÞ2� [33].
A typical evolution of the occupation number distribution
can be acquired by studying Fig. 2. At short times, but still
�t * 1, the very narrow initial distribution around the
average filling f broadens almost symmetrically (see the
inset of Fig. 2). After the rapid broadening, a new regime
with an asymmetric evolution sets in, in which the tail of
the distribution slowly converges towards the expected
asymptotic distribution ð1=fÞ½f=ð1þ fÞ�nþ1 [33]. This
means that the probability for states with larger filling is
exponentially suppressed; i.e., these states are rare. Note
that�ðn;1Þ is exactly the single site reduced densitymatrix

of the full asymptotic density matrix �̂ðt ¼ 1Þ ¼ ðÎ=MÞ
[34]. To obtain analytical insight into the very different
regimes of the evolution, we take the continuum limit of
Eq. (2) for large f. The continuous on-site occupation
number distribution pðx ¼ n=f; �Þ ¼ f�ðn; �Þ, and thus
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FIG. 2 (color online). Numerical evolution of the density ma-
trix elements �ðn; �Þ [solid lines, Eq. (2)] in a semilogarithmic
plot versus n for large rescaled times � between 0.1 and 50 (not
equidistant) in the direction of the (red) arrow. The inset shows
the same evolution at shorter times � between 0.0002 and 0.1
(not equidistant) in the direction of the (red) arrow in a linear
plot. Parameters: f ¼ 3 and U=@� ¼ 10. The dashed (red) lines
show the (analytical) asymptotic limit.
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pððn þ 1Þ=f; �Þ ¼ pðx þ dx; �Þ ¼ pðx; �Þ þ ð@p=@xÞdx.
Hence, one derives the nonlinear integrodifferential
equation [33]

@pðx; �Þ
@�

¼ @

@x

�
Dðx; �Þ @pðx; �Þ

@x
� Fðx; �Þpðx; �Þ

�
: (3)

Here,

D ¼
Z 1

0

xypðy; �Þ
ðx� yÞ2 þ "2

dy;

F ¼
Z 1

0

xy@ypðy; �Þ
ðx� yÞ2 þ "2

dy;

(4)

and " ¼ @�=fU. The peculiar form of Dðx; �Þ and
Fðx; �Þ stems from the configuration dependent rates
and triggers a wide range of rich phenomena. Note
that the structure of Eq. (4) ensures that both the total
probability [

R1
0 pðx; �Þdx ¼ 1] and the average population

[
R1
0 xpðx; �Þdx ¼ 1] are conserved quantities [33]. Further,

it can be checked that the asymptotic solution of Eq. (3) is
pðx;1Þ ¼ e�x, which is the continuum limit of the steady
state in the large f limit [33]. The continuum description is
justified for f large and finite ", assuming thatpðx; �Þ varies
smoothly enough on scales of the order of 1=f. In the
present case, the strongest variations of distributions are
due to the initial state, especially for a low filling f. After
this initial stage, pðx; �Þ smoothens out rather quickly and
the continuum description is highly accurate over a wide
time range.

In the following, we solve analytically the diffusion
equation (3) in the short time and in the long-time limits
focusing on the evolution of the particle distribution and
the local density fluctuations �.

Short-time relaxation.—Within the diffusion equation (3),
initially the distribution p is strongly peaked and symmetric
around the value x ¼ 1. For such a distribution, the force
is negligible compared to the diffusion function. The diffu-
sion equation at x � 1 can be approximated by
@�pðx; �Þ ¼ @xf1=½ðx� 1Þ2 þ "2�@xpðx; �Þg.

This leads to a dynamics which, in the analytically
solvable limit " ! 0, is given by an anomalous diffusion

of the form pðx; �Þ ¼ 1=½4�ð5=4Þ�1=4�e�ðx�1Þ4=ð16�Þ. �ðsÞ
is the gamma function [35]. Using this analytical solution
for the particle distribution, the local number fluctuations
�ð�Þ=f2 ¼ R1

0 ðx2 � 1Þpðx; �Þdx exhibit a power-law rela-

xation with �=f2 ¼ ½�ð3=4Þ=�ð5=4Þ� ffiffiffi
�

p
. This analytical

result is in excellent agreement with the numerical results
shown in Fig. 3 obtained by solving Eq. (2). Deviations are
found at small fillings and short times, where the approxi-
mation " ! 0 is not justified. However, for larger fillings,
for example, f ¼ 20, the time regime in which the power-
law decay appears is already large.

Physically, this very rapid initial broadening of the
particle distribution translates into the fast creation of

small particle fluctuations around the average value caused
by the heating. These fluctuations arise via virtual excita-
tions of low energetic cost of orderOðUÞwhich thus can be
reached rapidly. This behavior is similar to the dynamics
observed in a double well potential [21].
Long-time relaxation.—The obtained short-time solu-

tion breaks down as the distribution approaches the reflec-
tive boundary at x ¼ 0 [36]; the distribution is no longer
symmetric around x ¼ 1, and the combined action of the
force term with the diffusion drives the system towards
its large time asymptotics pðx;1Þ ¼ e�x. Physically, the
exponential suppression of large values of x corresponds to
the rareness of the states with a high number of particles
accumulated on a single site. Therefore, naively, one
expects that their effect is overwhelmed by the much
more numerous states at low filling. However, the rare
states are associated with a decaying small diffusion func-
tion and force given by Dðx; �Þ � �Fðx; �Þ � ð1=xÞ, lead-
ing to the slow occupation of the states with large x.
Because of these large time scales, these rare states are
found to dominate the long-time dynamics despite their
exponentially suppressed probability to occur. The under-
lying quantum mechanical process behind this slow diffu-
sion is the large energy cost of the virtual states via which
the diffusion processes at high x take place.
The form of the forcing term F in the large x limit brings

connections to other intriguing physical problems. One
example is the emergence of nonergodic and superaging
behavior for diffusion in a logarithmic potential, but with
a constant diffusion function D [37]. This can be realized
in another category of experiments with dissipative cold
atoms in optical lattices [38,39].
Approaching the asymptotic solution (see Fig. 2), we use

the convenient ansatz pðx; �Þ ¼ pðx;1Þgðx; �Þ. The evolu-
tion of the function g is shown in Fig. 4 and suggests a
scaling form gðx; �Þ ¼ gð�Þ with � ¼ ½x� að�Þ�=bð�Þ.
Here, a and b are some functions of � to be determined.
Adopting this ansatz leads to [33]
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FIG. 3 (color online). Local particle fluctuations �=f2 versus
rescaled time � for U=@� ¼ 10. Numerical results (solid lines)
for various fillings f ¼ 3, 5, 7, 9, 20 in the direction of the arrow
are obtained solving Eq. (2). The approximate analytical solution
�=f2 ¼ ½�ð3=4Þ=�ð5=4Þ� ffiffiffi

�
p

of the diffusion equation is repre-
sented by the dashed line.
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pðx; �Þ ¼ pðx;1Þ
2

�
1� erf

� ffiffiffi
3

p
2

x� ffiffiffiffiffiffi
2�

p

ð2�Þ1=4
��
; (5)

where erf is the error function [35].
Figures 4(b) and 4(c) show that, at long enough times,

the numerical data and the proposed analytical � depen-

dence að�Þ / ffiffiffi
�

p
and bð�Þ / �1=4 match accurately. Note

that the numerical results still show deviations from the
exact analytical prefactors. We verified that these devia-
tions become smaller with increasing filling. Thus, we
conclude that the analytical form is applicable in the large
f limit. For large enough times, the obtained solution gives
a very good approximation in the entire range of x. The
reason for this is the fast initial relaxation at low values of
x. Thereafter, only small relative changes occur at small x.
These changes in the probability distribution are mainly
connected to the variations at large x via particle number
conservation. Thus, we can use the obtained solution to
calculate the local particle fluctuations �. The correspond-
ing integral can be solved analytically, giving

�1 � �ð�Þ / hð�Þe�3=2
ffiffiffiffiffiffi
�=2

p
; (6)

where h depends algebraically on �. We thus have shown
analytically the emergence of the stretched exponential
behavior. This finding, as depicted in Fig. 1, compares
well to the numerical solution of Eq. (2). However,
the time at which the stretched exponential occurs, and
the detailed decay, depend on the filling. In particular, the
stretched exponential occurs later for larger fillings.

To summarize, we have uncovered, in the Bose-Hubbard
model coupled to a dissipative environment, two uncon-
ventional relaxation regimes: at short times and large
enough fillings, a power-law regime, while at large times
and any filling, a stretched exponential regime. This last
regime is dominated by rare events which correspond to the
occupation of a single site with a large number of atoms.
The rare states in the tail of the distribution function e�x

are occupied with decreasing time scales / 1=x. These
ingredients alone allow us to estimate the main time
dependence of the fluctuations employing a simple saddle

point argument. Since � � R1
0 x2e�xe�At=x, the saddle

point integration ½ðd=dxÞðxþ At=xÞjx0 ¼ 0� leads to � �
e�

ffiffiffiffi
At

p
, recovering the stretched exponential. Indeed, very

slow transition rates, due to the high energetic cost of the
processes connecting these rare configurations, dominate
the long-time dynamics. This emergent glasslike dynamics
is thus a signature of the complex level structure of the
Bose-Hubbard Hamiltonian. Dissipation, forcing the sys-
tem to explore its whole configuration space, including rare
and energetically unfavorable configurations, manifests
the complex energy levels structure of the system. In future
works, we plan to investigate the existence of stronger
connections beyond the dominating rare events to glassy
physics, e.g., the emergence of dynamical heterogeneity,
aging phenomena [8,40], or the physics of the kinetic
constraints model [11,41].
Experimental observation of these relaxation regimes is

within reach. We discuss in the following possible realiza-
tions for the stretched exponential regime which is experi-
mentally more demanding to study. We consider a gas of
87Rb atoms (massm) confined to an optical lattice potential
with wavelength � ¼ 1064 nm. For a lattice depth of V ¼
9ER (where ER ¼ h2=2m�2), the ratio of the interaction
over tunneling is U=J � 9:2 with J=@ � 367 s�1. The
realization of the dissipator in Eq. (1) could be achieved
by a noisy optical potential pattern, e.g., due to an addi-
tional, time dependent, speckle beam [29] or an incom-
mensurate superlattice [30] with a randomly changing
phase or amplitude. Since the strength of � in these setups
can be tuned by the intensity of the light fields, this allows
one to have @�=J � 1 or more. To observe the stretched
exponential regime, a low filling, for example, n ¼ 0:5,
would be advantageous (see Fig. 1). For this filling and
@�=J � 1, the experimental time scales needed to identify
the stretched exponential regime are of the order of t>0:3s
(

ffiffiffi
�

p
> 8 in Fig. 1), and lattice occupations up to four atoms

per site will be occupied with a non-negligible probability.
This required time scale is small compared to the time
scale of the three-body losses (for an occupation of n ¼ 4,
the three-body loss scale is approximately 1.6 s [42]) and to
the time scale of secondary collisions with the background
gas [42]. Thus, these processes can be neglected. Further,
transitions to higher Bloch bands can be due to the inter-
action of the highest occupied sites or by the dissipation.
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FIG. 4 (color online). (a) The dotted blue line shows the
evolution of gðx; �Þ versus x for large rescaled times � 2
½28; 710� in the direction of the red arrow. Inset: Plot of gðx; �Þ
versus � ¼ ½x� að�Þ�=bð�Þ (solid blue line) and fit with an error
function (dashed red line). (b) að�Þ is plotted versus

ffiffiffi
�

p
(solid

blue line) and compared to a linear fit (dashed red line). (c) bð�Þ
is plotted versus �1=4 (solid blue line) and compared to a linear fit
(dashed red line). Parameters: f ¼ 0:5 and U=@� ¼ 15.

PRL 111, 195301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 NOVEMBER 2013

195301-4



Both can be neglected for experimentally relevant time
scales as, (i) the next Bloch band is approximately at an
energy�E � ffiffiffiffiffiffiffiffiffiffiffiffi

4VER

p
, which is� 3:7 times the interaction

energy ðU=2Þnðn� 1Þ for a large filling as n ¼ 4, and
(ii) transitions due to dissipation can be controlled via
engineering the noise spectrum and tuning the Lamb-
Dicke parameter [22,23,43]. For example, the frequency
of the noise pattern could be cut below the frequency
corresponding to transitions to higher bands.

We are grateful to J. S. Bernier, G. Biroli, R. Bouffanais,
J.-P. Eckmann, J. B. Gong, P. Hänggi, H. Ott, T. Prosen,
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Note added.—During the referee process we became
aware of [44], which shows non-exponential relaxation
dynamics.
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