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We show that it is possible to clone quantum states to arbitrary accuracy in the presence of a Deutschian

closed timelike curve (D-CTC), with a fidelity converging to one in the limit as the dimension of the CTC

system becomes large—thus resolving an open conjecture [Brun et al., Phys. Rev. Lett. 102, 210402

(2009)]. This result follows from a D-CTC-assisted scheme for producing perfect clones of a quantum

state prepared in a known eigenbasis, and the fact that one can reconstruct an approximation of a quantum

state from empirical estimates of the probabilities of an informationally complete measurement. Our

results imply more generally that every continuous, but otherwise arbitrarily nonlinear map from states to

states, can be implemented to arbitrary accuracy with D-CTCs. Furthermore, our results show that

Deutsch’s model for closed timelike curves is in fact a classical model, in the sense that two arbitrary,

distinct density operators are perfectly distinguishable (in the limit of a large closed timelike curve

system); hence, in this model quantum mechanics becomes a classical theory in which each density

operator is a distinct point in a classical phase space.
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The possible existence of closed timelike curves (CTCs)
in certain exotic spacetime geometries [1–3] has sparked a
significant amount of research regarding their ramifica-
tions for computation [4–6] and information processing
[7,8]. One of the well-known models for CTCs is due to
Deutsch [9], who had the insight to abstract away much of
the space-time geometric details and use the tools of
quantum information to address physical questions about
causality paradoxes. One consequence is that quantum
computers with access to ‘‘Deutschian’’ CTCs (D-CTCs)
would be able to answer any computational decision prob-
lem in PSPACE [6], a powerful complexity class contain-
ing the well-known class NP, for example. Also, quantum
information processors with access to D-CTCs could dis-
tinguish nonorthogonal states perfectly [7], thus leading to
the strongest violation of the uncertainty principle that one
could imagine. From the perspective of Aaronson [10,11],
we might take these results to be complexity- and
information-theoretic evidence against the existence of
CTCs that behave according to Deutsch’s model.

In order to avoid ‘‘grandfatherlike’’ paradoxes,
Deutsch’s model imposes a boundary condition, in which
the density operator of the CTC system before it has
interacted with a chronology-respecting system should be
equal to the density operator of the CTC system after it
interacts. More formally, let �S denote the state of the
chronology-respecting system and let �C denote the state

of the CTC system before a unitary interaction USC (acting
on systems S and C) takes place. The first assumption of
Deutsch’s model is that the state of the chronology-
respecting system S and the chronology-violating system
C is a tensor-product state, since presumably they have not
interacted before the CTC system comes into existence.
Furthermore, Deutsch’s model imposes the following self-
consistency condition:

�C ¼ ��ð�CÞ � TrSfUSCð�S � �CÞUy
SCg; (1)

so that potential grandfather paradoxes can be avoided.
Computationally, one can take the view that nature is
finding a fixed point of the map �� [6,9], which depends

on the state �S of the chronology-respecting system. The
chronology-respecting system’s state evolves by

�S ! �out ¼ TrCfUSCð�S � �CÞUy
SCg;

where the partial trace is over the CTC system. Since �C

depends on �S, such an evolution is nonlinear and as a
result is a nonstandard quantum evolution.
In developing the above consistency condition, Deutsch

explicitly assumed that density operators are the funda-
mental object characterizing quantum systems, and, under
this assumption, Deutsch’s model does not lead to any of
the classical time-travel paradoxes [9]. If the density
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operator is viewed as a statistical ensemble or as a state
of knowledge, then Deutsch’s consistency condition
becomes problematic and could conceal underlying
paradoxes [9,12].

Since quantum processors with access to D-CTCs can
perfectly distinguish pure quantum states [7], one might
conclude that such D-CTC-assisted processors could also
approximately clone any pure quantum state, in violation
of the celebrated no-cloning theorem [13,14]. In fact,
Deutsch suggested that quantum cloning should be pos-
sible when one has access to D-CTCs behaving according
to Eq. (1) [9], and Brun et al. conjectured that ‘‘a [D-CTC-
assisted] party can construct a universal cloner with fidelity
approaching one, at the cost of increasing the available
dimensions in ancillary and CTC resources’’ [7]. Indeed, a
simple idea for building an approximate cloner would be to
discretize a given finite-dimensional Hilbert space, by
casting an " net over all of the pure states in it, such that
any state in the Hilbert space is " close in trace distance to a
state in the " net. (Simple arguments for the size of such "
nets are well known [15].) One would then construct a
unitary for perfectly distinguishing states in the " net,
according to the procedure given in Ref. [7], and produce
clones according to the classical outcome of the distin-
guishing device. States in the " net would be cloned
perfectly, while the hope is that states that are not in the
" net would be identified with the closest state in the " net.

An approach similar to this was pursued in Ref. [16], and
the numerical evidence given there suggests that such an
approach should work in general. However, it is well
known (and perhaps obvious) that there are continuity
issues with D-CTCs [6,9,17], so that one cannot easily
appeal to continuity in order to develop this argument in
greater detail.

In this Letter, we give an approach to quantum state
cloning with D-CTCs that is conceptually different from
the aforementioned one, and it is also significantly simpler
and thus more appealing. We show how to clone any
quantum state, such that the fidelity of each clone
approaches one as the dimension of the assisting D-CTC
system becomes large. An important implication of our
result is that Deutsch’s model turns quantum theory into a
classical theory, in the sense that each density operator
becomes a distinct, distinguishable point in a classical
phase space.

One can quickly grasp the main idea behind our con-
struction by taking a glance at the circuit in Fig. 1. The first
step is to perform an informationally complete measure-
ment on the incoming state �S. Such a measurement is well
known in quantum information theory [18–20]—the prob-
abilities of the outcomes are in one-to-one correspondence
with a classical density operator description of the quan-
tum state. (That is, if one knew these probabilities, or could
estimate them from performing this kind of measurement
on many copies of the given state, then one could construct

a classical description of the state.) Let ! denote the state
resulting from the measurement:

� ! Xd�1

x¼0

TrfMx�gjxihxj � !; (2)

where each Mx is an element of the informationally com-
plete measurement (so that Mx � 0 for all x and

P
xMx ¼

I), d is the number of possible measurement outcomes, and
fjxig is the standard computational basis.
Next, we feed the state ! into a circuit that cyclically

permutes it with N CTC systems that each have the same
dimension as!. Such an operation on its own (after tracing
over all systems except for the N CTC systems) has as its
unique fixed point the state!�N , so that, in some sense, the
cyclic shift produces N ‘‘temporary’’ clones.
Finally, we copy the value of x from each of the N CTC

systems to one of a set of ancillary systems in order to
‘‘read out’’ N copies of the state !. In Fig. 1 we have
depicted this operation as a sequence of controlled-not
(CNOT) gates, but in fact it will generally be a higher-
dimensional analogue of a CNOT, like a modular addition
circuit:

jxijyi ! UðjxijyiÞ ¼ jxijðxþ yÞ moddi: (3)

The fixed point of the overall circuit, after tracing over all
systems except for the N CTC systems, is still !�N,

FIG. 1. Example circuit for cloning using N ¼ 3 CTC sys-
tems. An unknown state � is fed into a unitary UICM, whose
effect is to implement an informationally complete measurement
with operators fMxg, such that Mx � 0 and

P
xMx ¼ I. The

resulting state ! ¼ P
xTrfMx�gjxihxj is combined with N CTC

systems and cyclically permuted with them. (For each CTC
system, the past mouth of its wormhole on the left, indicated
by vertical double lines, is identified with its future mouth on the
right.) Finally, modular addition circuits (depicted here as CNOT

gates) read out N copies of the state !, from which we can
estimate the original state � to arbitrarily good accuracy as the
number N of CTC systems becomes large (of course, one would
require N to be much larger than 3). The main text provides
details of why this approach works for D-CTC systems.
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because these modular addition gates do not cause
any disturbance to the CTC systems. As a result, the
reduced state on the N ancillas is equal to !�N , and we
can then estimate the eigenvalues of ! simply by counting
frequencies—the estimates become better and better as N
becomes larger due to the law of large numbers. Since
these eigenvalues result from an informationally complete
measurement, we can construct a classical description of
the state � and produce as many approximate copies of it as
we wish.

We now develop this argument in more detail. We first
show how to produce perfect clones of a quantum state that
is diagonal in a known eigenbasis. Suppose that the initial
state of the system and the CTC is as follows:

�S � �C; (4)

where S is a d-dimensional system and C consists of N
d-dimensional systems. Furthermore, let �S have the fol-
lowing spectral decomposition:

�S ¼
X

x

pXðxÞjxihxjS; (5)

where pXðxÞ is a probability distribution and fjxiSg is some
orthonormal basis. The first operation is to perform a cyclic
shift by one to the right of all N þ 1 systems, i.e., the
following unitary operation:

jx1iS � jx2iC1
� jx3iC2

� � � � � jxNþ1iCN

! jxNþ1iSjx1iC1
jx2iC2

� � � � � jxNiCN
; (6)

where we have broken up the system C into N parts as
C1 . . .CN . One can then easily prove that, if this is the only
interaction, the self-consistent and unique solution is for
the CTC systems to be in the state ��N . Indeed, we can do
so by demonstrating that ��N is the unique fixed point
of the above map. For simplicity, let us initialize the state
of the CTC system so that it is maximally mixed, and so
that the overall state is

�S � �C1
� �C2

� � � � � �CN
; (7)

where � is the maximally mixed qudit state. After a cyclic
shift, the state becomes

�S � �C1
� �C2

� � � � � �CN
: (8)

Tracing over the system S gives

�C1
� �C2

� � � � � �CN
: (9)

This becomes the initial state of the CTC for the next
application of the map, so that the overall state is now

�S � �C1
� �C2

� � � � � �CN
: (10)

Applying the cyclic shift again gives �S � �C1
� �C2

�
� � � � �CN

, so that the reduced state is �C1
� �C2

� � � � �
�CN

. It is then clear that applying the above procedure N

times in total gives the following state for the CTC

�C1
� �C2

� � � � � �CN
; (11)

and further applications will not change anything, so that
this is the fixed point of the CTC. (In fact, by taking an
arbitrary initial state for the CTC, we can easily see by a
similar procedure that the state in Eq. (11) will be the
unique fixed point after applying the map N times.)
Now, this procedure already produces N temporary

clones of the initial state, and one might claim that this
circuit on its own is a cloner. However, the N clones in the
CTC systems are not available after these systems enter the
future mouth of the wormhole, so that this cloner is not
particularly useful. We would like to have a circuit for
which the clones are available after the CTC systems are no
longer in existence.
Since we have assumed for now that we know the

eigenbasis of the incoming state, there is a simple modifi-
cation of the above circuit that will allow for cloning it.
Consider again performing the circuit given above. As we
showed, the fixed point solution for the CTC is ��N . What
we can do after the cyclic shift is to copy the value of x
from the N CTC systems to N d-dimensional ancilla states
initialized to the state j0i, by using a modular addition
circuit. These circuits perform the unitary in Eq. (3) in the
eigenbasis of the incoming system; they therefore cause no
disturbance to the CTC systems, and the fixed point solu-
tion for the state of the CTC is still ��N . Furthermore, the
marginal state on the ancillas and the original system is
��Nþ1, so that we have successfully produced N clones of
the state of the incoming system, in the case where its
eigenbasis is known. (If the eigenbasis is not known, then
one can easily check that our circuit will decohere the
incoming state � in the basis in which the modular addition
circuits are specified and produce N perfect copies of the
decohered state.)
The above circuit allows for perfect cloning of quantum

states in a known eigenbasis. A particular preprocessing of
an arbitrary incoming state will allow us to produce ap-
proximate clones whose fidelity with the incoming state
becomes arbitrarily high in the limit where the number N
of CTC systems becomes large. Let � denote the density
operator of the input state. We can perform a measurement
map of the form in Eq. (2) on the incoming state. Such a
map is a completely positive trace-preserving map, so that
we can perform it by first appending an ancilla of sufficient
size, acting with a unitary on the joint system, and tracing
out the ancilla. We should be sure to choose the measure-
ment map to be informationally complete, such that the
outcome probabilities are in one-to-one correspondence
with the parameters of the density operator.
The procedure for approximate cloning is as follows:
On the incoming state, perform the measurement map

specified by Eq. (2).
Append the N CTC systems to this state and send the

N þ 1 systems through the cyclic shift circuit, followed by
N CNOT gates from the CTC systems to N ancilla systems.
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The resulting state after the CTC expires is!�Nþ1 [with
! defined in Eq. (2)].

Perform measurements in the basis fjxig to estimate the
distribution TrfMx�g to arbitrarily good accuracy (with N
large).

Based on the estimate, produce as many approximate
clones of � as desired.

In step 4, we can argue that the estimate becomes
arbitrarily good as N becomes large, due to the law of
large numbers. In particular, Hoeffding’s bound states that
the probability for the empirical frequencies to deviate
from their true values by more than any constant � > 0 is
bounded from above as 2 expf�2N�2g [21], so that this
probability rapidly converges to zero as the number N of
CTC systems increases. The number of CTC systems
scales well with the desired accuracy for cloning (and the
number of gates is linear in the number of CTC systems)—
to have an estimation error no larger than some constant
" > 0 requires a number of gates no larger than
Oð logð1="ÞÞ.

A slight modification of the above protocol would be to
avoid tracing over the ancilla after performing the unitary
corresponding to the measurement map. The state resulting

from the unitary is
P

x;yðMx�M
y
y ÞE � jxihyjB if the input

state is �, where we have labeled the environment as E and
the output as B. We could then append N CTC systems,
labeled asE1B1 . . .ENBN , that are each the same dimension
as the composite systemEB. After that, wewould perform a
cyclic shift of the EiBi systems, followed by a CNOT gate
from each Bi system to an external ancilla. It is straightfor-
ward to show that the fixed-point solution of the CTC

systems E1B1 . . .ENBN is then ðPxMx�M
y
x � jxihxjÞ�N .

That is, the effect of the CNOT gates is to decohere the Bi

systems. The CNOT gates will then read out many copies of
the state

P
xTrfMx�gjxihxj to the external ancillas, from

which we can estimate the input state � as before. An
advantage of this approach is that this modified circuit
avoids potential interpretational issues with the initial
measurement map. That is, one might claim that the mea-
surement map in Eq. (2) actually ‘‘collapses’’ the state � to
one of the states jxi with probability TrfMx�g and the
resulting circuit merely copies the given state jxi many
times, providing no advantage for cloning over an ordinary
quantum circuit. However, by having all evolutions be
unitary, it is clear that the modified circuit avoids this
interpretational problem.

By a well-known argument [14], the ability to clone
implies the ability to signal superluminally, so that this is
the case for our cloner here (assuming the usual description
of quantum measurements). Our results imply more gen-
erally that every continuous, but otherwise arbitrarily non-
linear, map f from states to states can be implemented to
arbitrary accuracy with Deutschian CTCs. This follows
because we can estimate the incoming state � to arbitrary
accuracy and then prepare fð�Þ at will.

Discussion.—An ‘‘open timelike curve’’ is one in which
a quantum system enters the future mouth of a wormhole
and emerges from the past mouth of the wormhole without
ever interacting with itself along the way [8]. Our circuit in
Fig. 1 indicates that we are very close to implementing
quantum state cloning using only an open timelike curve. If
the modular addition circuits were not present, then this
approach would indeed be just an open timelike curve. We
say that we are ‘‘very close’’ because in our setup, the
modular addition circuits do not disturb the state of
the CTC systems, so one might be tempted to expand the
definition of an open timelike curve to allow for such
nondisturbing interactions.
One might question the method above by taking an

adversarial approach to quantum state cloning as was
done with quantum state discrimination in Ref. [22]. In
such an adversarial model as described in Ref. [22], an
adversary would prepare a labeled mixture of states of the
form

P
xpðxÞjxihxj � �x, feed in the second system to the

cloner, and demand that the output state of the composite
system be

P
xpðxÞjxihxj � ~�x � ~�x, where ~�x is a good

approximation to �. Our approach will not satisfy this
demand but instead outputs an approximate copy of the
average state

P
xpðxÞ�x because Deutsch’s criterion in

Eq. (1) stipulates that the fixed point is computed with
respect to the reduced state of the system entering the CTC
device. However, such behavior is to be expected, since
quantum mechanics in Deutsch’s model is no longer linear,
so that the action of a map on a mixture of states is not
equal to the mixture of states resulting from the map acting
on each state. Some authors have argued that it is not
sensible to represent ensembles as labeled mixtures when
we are dealing with a nonlinear theory [23]. Labeled
mixtures are in one-to-one correspondence with ensembles
in standard quantum mechanics, but this correspondence
breaks down in a nonlinear theory. One might also argue
that all of this points to the Deutsch model itself being
incomplete [24]. Regardless, what we have shown in this
Letter is that if a quantum state � is presented to a device
that behaves according to the prescription of Deutsch’s
model, then it is possible to produce an arbitrary number
of very good approximate clones of �.
Our results imply that, in a particular sense, Deutsch’s

model is actually a classical model for CTCs rather than a
quantum model. That is, quantum theory supplemented
with Deutsch’s prescription for CTCs seems to require an
interpretation as a classical probability theory on the space
of density operators. This in turn leaves open the question
of whether other descriptions of CTCs might retain more of
the distinctive features of quantum theory. This feature of
Deutsch’s model originates from the way that it combines
quantum features (density operators and unitary evolu-
tions) with nonquantum ones (nonlinear evolution) in an
ad hoc way. In the framework of generalized probabilistic
theories [25–27], there is a basic result stating that if states
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and evolutions are defined operationally then the evolution
must be linear in the state [28]. The fact that Deutsch’s
model allows for evolutions that are nonlinear in the den-
sity operator implies that the set of all density operators
corresponds to linearly independent states at the opera-
tional level. Our result strengthens this observation for
the case of Deutsch’s model, showing that the states cor-
responding to density operators are not only linearly inde-
pendent, but even perfectly distinguishable.

Open Questions.—It might be considered somewhat
unsatisfactory that we obtain only an arbitrarily good
approximation of cloning. The limit achieving perfect
cloning requires taking the size of both the CTC system
and the ancillary system to infinity. This seems to be
necessary if we would like to read out the parameters of
the density operator as we have done here, but this is less
clear if all we desire is to have two clones of the incoming
state. So an open question to consider going forward from
here is if there exists an exact 1 ! 2 CTC-assisted cloner
that requires only a finite external system but with a
potentially infinite internal CTC system.
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