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The Dirac spin liquid ground state of the spin 1=2 Heisenberg kagome antiferromagnet has potential

instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-

scale numerical calculations. However, previous attempts to observe these instabilities have failed. We

report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid

state which provides new insight into the stability of the ground state of the kagome antiferromagnet.

The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may

leave spinons deconfined along one direction. Second, it breaks the Uð1Þ gauge symmetry down to Z2.

Third, it has the spatial symmetry of a previously proposed ‘‘monopole’’ suggesting that it is an instability

of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of

the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single

crystals of volborthite suggesting it may already be realized in these materials.
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The ground state of the spin 1=2 kagome antiferromag-
net is likely a very novel form of magnetism; proposals
include magnetic ordering in one of several spin patterns
[1], a valence bond crystal with a 36 site unit cell [2] or a
12 site unit cell [3], a chiral spin liquid [2,4], several kinds
of gapped spin liquids [5,6], and a gapless algebraic spin
liquid [7,8]. Many of these states can be represented by a
projection of a Slater determinant or BCS wave function
onto the insulating one fermion per site subspace—the so-
called fermion slave particle method. One ground state that
is particularly competitive and novel is theUð1Þ Dirac spin
liquid (DSL), a gapless algebraic spin liquid. The DSL is
an isotropic spin liquid governed at low energies by quan-
tum electrodynamics in two spatial dimensions. Its spin
carrying excitations are gapless Dirac fermions with a
linear dispersion relation around two degenerate points in
the band structure similar to the electronic structure of
graphene. Its singlet excitations are characterized by gap-
less photons arising from the emergent Uð1Þ gauge sym-
metry of the mean-field Hamiltonian.

Many other candidate ground states of the kagome anti-
ferromagnet can be written as instabilities of the DSL;
these have been cataloged in Ref. [9]. Despite the existence
of these potential instabilities, variational studies that
include the DSL report it to be remarkably stable [8–12].

Recently, large scale density matrix renormalization
group (DMRG) calculations [3,13,14] have produced
strong numerical evidence that the true ground state of
the kagome antiferromagnet is a Z2 spin liquid, where

the name Z2 refers to the gapping out of the Uð1Þ gauge
boson much like the Meissner effect in a superconductor.
In particular, the best variational DMRG state has a gap to
all excitations and the topological entanglement entropy
expected of a Z2 spin liquid.
Perhaps the simplest explanation of the DMRG results,

as proposed in Ref. [6], is that spin carrying Dirac fermions
pair up to form a superfluid. These authors catalog 20
possible such states and give explicit instructions for con-
structing 14 of them. However, variational studies [12]
have failed to find any of these states with a lower energy
than the DSL.
In this Letter, we revisit the projected BCS (PBCS)

variational wave function problem on the kagome lattice
and the stability of the DSL. Building on Refs. [15,16], we
explore the entire set of time-reversal invariant projected
BCS wave functions by optimizing the symmetric pairing
matrix that characterizes these states. This wave function
can describe Uð1Þ and Z2 spin liquids, general valence
bond solids, and many other potential instabilities of the
DSL. The most important results of our study are the
following:
(1) There are projected BCS wave functions with lower

energy than the DSL. Figure 1 shows the spin correlations
of a wave function with lower energy than the DSL on a
48-site lattice. The optimal state breaks lattice symmetry
and doubles the unit cell; however, it preserves C2 rota-
tional symmetry about several lattice points, which gives it
a one-dimensional character. We refer to this new state as a
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striped spin liquid crystal (SSLC). This state fundamen-
tally challenges the typical approach for searching for spin
liquids, a search focused on isotropic states, for it shares
many features of these states even though it breaks crystal
symmetries.

(2) A symmetry analysis suggests that these states of
lower energy are instabilities of the DSL. SUð2Þ flux
patterns can distinguish among different classes of spin
liquids. We find that the SSLC and the DSL have nearly
identical flux patterns. However, our state requires pairing
in the projected BCS form: we find no states with lower
energy than the DSL if the optimization is restricted to
states with Uð1Þ gauge symmetry. We conjecture that
broken symmetry and lower energy result from a prolif-
eration of spin-singlet, nodal-tripletwmonopoles, an insta-
bility of the DSL described in Ref. [8].

(3) There is reason to believe the SSLC appears in real
materials. The pattern of spin correlation shown in Fig. 1
has been observed in the structural distortion pattern of
kagome layers of single crystals of volborthite and in
samples of Zn-paratacamite with Zn concentrations less
than one-third [17,18]. These materials are ideal candidates
for further understanding the properties of this exotic state.

Method.—Our objective is to find the lowest energy state
of the nearest neighbor spin 1=2 kagome antiferromagnet
within the set of Gutzwiller projected BCS wave functions:

j�i ¼ P̂Nj�0i: (1)

j�0i is a BCS wave function. For an electron configuration

on the lattice given by ~R ¼ ð ~r1; ~r2; . . . ; ~rNÞ, the amplitude

is a determinant�0ð ~RÞ ¼ detMð ~RÞ. The elements ofM are

derived from pairing amplitudes: Mijð ~RÞ ¼ �ð ~ri; ~rjÞ. P̂N

projects out configurations which do not have one electron
per site. This class of states includes the DSL and all
of the states cataloged in Ref. [6], but is not restricted to
these. We minimize the energy of the Heisenberg spin

Hamiltonian on the kagome lattice, H ¼ P
hiji ~Si � ~Sj, by

varying all NðN � 1Þ=2 elements of the pairing function
�ð~ri; ~rjÞ using the methods described in Refs. [15,16].

To explore this energy landscape, we used the projective
symmetry group classification [6,8,9,19] to start the opti-
mization in many qualitatively different spin liquid states.
We used the mean field parameter defined in Ref. [6] to
derive a pairing matrix as described in the Supplemental
Material, S-I and S-II [20]. This allowed us to start our
optimization in 14 different classes of spin liquid states.
Figure 2 shows typical optimization traces of the ener-

gies for each spin liquid state on the 4� 4 lattice (48 sites),
labeled following Table II of Ref. [6].
On a 48-site lattice, the DSL gives an energy per site

of �0:429 38� 4� 10�5. Many states in our study have
lower energies; our best variational state has an energy per
site of �0:430 52� 5� 10�5. Thus, the DSL is not the
most stable projected mean field state. We have found
lower energy states on clusters of up to 192 sites with a
trend towards the same spatial symmetry breaking as
shown in the Supplemental Material S-III [20,21].
This is particularly surprising in light of previous studies

that find the Dirac spin liquid to be stable against many
instabilities [7–9,12,22]. These studies failed to find the
SSLC because they were restricted to highly symmetric,
short-range mean-field Hamiltonians. We avoid this limi-
tation by optimizing all elements of the pairing matrix.
This effectively introduces arbitrary long-range hopping
and pairing and therefore allows breaking arbitrary spatial
symmetries of the mean-field Hamiltonian.
Symmetry.—Let us then focus on the nature of our lowest

energy state. Most strikingly, we find that the state breaks

FIG. 2 (color online). (a) Typical stochastic optimization
traces starting from the 14 distinct PSG ansatz (ansatz 1–6 and
13–20 in Table II of Ref. [6]), and optimizing the pairing
function �. Highlighted dashed grey line shows the energy of
the Dirac state. Many traces end at an energy below this line.

FIG. 1 (color online). The nearest neighbor h�j ~Si � ~Sjj�i
correlations for the lowest energy projected mean field state.

Red means stronger h�j ~Si � ~Sjj�i, blue means weaker, and the

linewidth measures the magnitude of deviations from the mean.
On average, the red bonds are 0.8% lower energy and the blue
bonds are 1.4% higher energy than the mean.
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orientational and translation symmetry with a doubling
of the unit cell. Figure 1 shows deviations of the nearest
neighbor spin-spin correlation function from its mean (on
average, the blue bonds are 0.8% higher energy and the red
bonds are 1.4% lower energy than the mean). In contrast,
the DSL has slightly anisotropic spin correlations due to
the use of twisted boundary conditions on finite clusters (as
shown in Supplemental Material S-IV [20]) but no dou-
bling of the unit cell. The pairing matrix that projects to our
lowest energy state is shown in Supplemental Material S-V
[20] and has different symmetry but includes unphysical
aspects of the unprojected wave function.

We have checked that the broken symmetry state of
Fig. 1 has no nearby isotropic spin liquid. Starting near
our lowest energy state, we searched for a nearby isotropic
spin liquid by stochastically moving toward states which
had smaller deviations in their unprojected spin correlation

function h ~Si � ~Sji. This procedure recovered a symmetric

state with the same energy as the DSL. This suggests there
are no other isotropic spin liquids ‘‘close to’’ our state
or the DSL in the space of projected BCS wave functions
and that symmetry breaking in addition to longer range
hopping and pairing terms are important for this state.

Having found a broken symmetry state, we would like to
understand its relation to known symmetric spin liquids.
The anomalous density matrix (ADM) of the unprojected
wave function is a useful analytic tool [23]. It can be used
to calculate an SUð2Þ flux through loops of bonds in the
lattice, and the flux pattern can then be used to distinguish
among the different spin liquids of Ref. [6]. The fluxes of
our SSLC lets us deduce which spin liquid our state
resembles. The ADM is given by

�ij ¼
�A�

ij Bij

B�
ij Aij

 !
; (2)

where

Aij ¼
h�0jfyi#fj#j�0i

h�0j�0i ; Bij ¼
h�0jfi"fj#j�0i

h�0j�0i ; (3)

and transforms under an SUð2Þ gauge transformation,

� ! G ��, like �ij ! Gi � �ij �Gy
j—exactly like the

mean fields in the corresponding slave particle theory
(see Ref. [24] or the Supplemental Material S-I [20]). We
can therefore use this matrix to study the projective sym-
metry properties of the optimized unprojected state j�0i.

We define the SUð2Þ matrix [see Ref. [19], Eq. (13)]

Wij ¼ �i�ij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det�ij

q
; (4)

that is an analog of theUð1Þ phase variable eiaij of ordinary
electricity and magnetism on a lattice. The SUð2Þ flux
matrix through any loop on the lattice is then the product

of ~Wij around a loop

�ijk...l ¼ iNloopWij �Wjk � . . . �Wli ¼ eið�=2Þn̂�� ; (5)

where Nloop is the number of bonds ij that form the loop.

This product is not gauge invariant; however, the trace is
gauge invariant and the angle � derived from it can be used
to distinguish different phases.
Natural loops to characterize the state j�0i are nearest-

neighbor bow ties (a ‘‘figure 8’’ enclosing two neighboring
triangles) and hexagons. (The trace of the flux through
odd-site loops vanishes by time-reversal symmetry.)
These loops allow us to determine which of the Uð1Þ spin
liquid states is most closely related to ours. The DSL has an
SUð2Þ flux angle of 2� for each hexagon and 0 for each bow
tie. The SSLC flux angles are nearly identical:

h�hexi ¼ ð1:994� 0:003Þ�;
h�bowi ¼ ð0:010� 0:007Þ�;

(6)

where the error estimate is the standard deviation and h. . .i
denotes the average value of the flux over all hexagons or
bow ties, respectively. This proximity to the DSL in energy
and flux angles leads us to conclude that the striped spin
liquid crystal is an instability of the Uð1Þ Dirac spin liquid.
Having established that our newly discovered state is

very close to the Dirac state, we now turn to its symmetry
breaking properties. Reference [9] contains a catalog of
space group representations of the kagome lattice which
require at most a quadrupling of the unit cell. Those with
the same period as the kagome lattice are labeled as A1, A2,
B1, B2, E1, and E2. Those that double or quadruple the unit
cell are labeled F1, F2, F3, and F4. The focus of Ref. [9]
was on the F1 representation for the ‘‘Hastings valence
bond crystal’’ states associated with the generation of mass
of the Dirac fermions. However, the bond amplitudes in
Fig. 1 are dominated by the E2 and F2 representations in
Figs. 3(a) and 3(b).
This is clearly seen in Figs. 3(c) and 3(d). There, we plot

energy as a function of asymmetry in the uniform and F2

components, respectively. In both cases, we subtract out
the E2 component to remove the effect of twisted boundary
conditions. This gives us

Ouniform ¼ X
hiji

h�j ~Si � ~Sjj�i � E1
2ijh�j ~Si � ~Sjj�i; (7)

and

OF2
¼ X

hiji
F1
2ijh�j ~Si � ~Sjj�i; (8)

where E1
2ij and F1

2ij are defined in Figs. 3(a) and 3(b).

Note that any state which breaks F2 symmetry generi-
cally also breaks E2 symmetry. Therefore, the symmetry
breaking of Fig. 1 can be entirely regarded as a breaking of
the F2 symmetry. Since no F1 representation is present,
and this pattern is associated with mass terms [9], the
spatial symmetry breaking alone does not generate a gap.
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Among instabilities of the Dirac fixed point identified in
Ref. [9], the only time reversal symmetric alternative to the
Hastings states is the spin-singlet, nodal-triplet w mono-
pole. In Supplemental Material S-VI [20], we show that the
six dimensional w-monopole operator transforms under
the three dimensional representations of both F1 and F2.
This remarkable coincidence leads us to conjecture that the
w monopole is responsible for the instability of the Dirac
state that leads to Fig. 1. A proliferation of this monopole
should lead to confinement, but neither magnetic ordering
nor dimerization is observed. The only natural candidate
for confinement is a pinning of the spinon to the ‘‘rails’’

with the strongest h ~Si � ~Sji bonds.
In addition to breaking the spatial symmetries of the

lattice, the physical system also breaks the Uð1Þ symmetry
of the Dirac state down to a Z2 symmetry. To study this
symmetry breaking, we optimized a series of wave func-
tions whose pairing matrices exclude the possibility of
pairing [i.e., Bij ¼ 0 in Eq. (2)]. Starting from the Uð1Þ
DSL, we multiplied each element of its pairing matrix
by a random scale factor (1þ r), where r was drawn
from a normal distribution with zero mean and standard

deviation X. Figure 2(b) of Supplemental Material S-IV
[20] shows 12 optimization runs with X 2 f0:1; 0:2; 0:33g.
The variation in initial energy was quite large—as high as
�0:375 per site. However, all simulations converge to the
energy of the Dirac spin liquid.
From these results, we conclude that the Dirac state lies

at the bottom of a deep and wide region in orbital space and
that the pairing of spinons is necessary to produce the state
shown in Fig. 1.
Discussion.—Based on our results, it seems very likely

that the Dirac fixed point is unstable to the formation
of a striped spin-liquid crystal phase. This conclusion rests
on two assumptions: (1) the symmetry breaking we
observe is not a finite size effect; (2) that fluctuations
beyond those captured by the projected wave function do
not restore the symmetry. There is indirect evidence that
the former assumption is valid. DMRG and exact diago-
nalization suggest that a 48-site cluster is large enough to
capture the qualitative physics of the system. The latter
assumption is more difficult to justify but one way would
be to construct the low energy effective field theory which
corresponds to our striped spin liquid crystal. This can be
done by performing a PSG analysis on the relevant lower
symmetry subgroup of the kagome lattice and use it to
search for a mean field Hamiltonian whose BCS wave
function projects to our state. (Since projection is a
many-to-one mapping, we cannot deduce the PSG of our
state directly.) Such an analysis would allow one to ex-
trapolate to the thermodynamic limit with fixed number of
variational parameters and provide a starting point for
studying fluctuations about this phase.
Though our variational state may not describe the ideal

Heisenberg model, as DMRG calculations suggest a Z2

state, perturbations to this model may stabilize it. From an
experimental viewpoint, there are a number of real kagome
lattice materials which have perturbations which would
promote the SSLC state. One promising class of materials
is the Zn-paratacamite family parametrized by Zn doping
concentration x with x < 1=3. Unlike the structurally per-
fect kagome lattice of the x ¼ 1 Herbertsmithite member
of the family, compounds with x < 1=3, including clinoa-
tacamite at x ¼ 0, break crystal symmetries and have
distorted kagome layers [17] with precisely the distortion
expected from the symmetry breaking of our state. Single
crystals of volborthite show the same distortion [18]. Our
results, therefore, motivate the study of single crystals of
these materials and suggests that above their magnetic
order transition temperature, they could have deconfined
spinons propagating along the ‘‘rails’’ that could conduct
heat much better in this direction than across the rails.
The most remarkable implication of our results is the

discovery of a spin liquid crystal as a low energy phase of
an ordinary spin Hamiltonian. This suggests that such
phases could be competitive in many other spin liquid
candidate systems. One explanation for this competition

FIG. 3 (color online). Spatial symmetry analysis of our state.
(a) one orientation F1

2ij of the F2 pattern. On the blue solid

bonds, F1
2ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2Nb

p
; on the red dashed bonds, F1

2ij ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2Nb

p
; on the thin black bonds, F1

2ij ¼ 0 (here, Nb the

number of nearest neighbor bonds). (b) one component E1
2ij of

the E2 pattern. On the thick blue bonds, E1
2ij ¼

ffiffiffiffiffiffiffiffiffiffiffi
2=Nb

p
; on the

thin black bonds, E1
2ij ¼ �1=

ffiffiffiffiffiffiffiffiffi
2Nb

p
. These patterns clearly arise

in Fig. 1. (c) and (d) correlation between the energy of different
states and the amount of asymmetry [(c) as defined by Eq. (7);
(d) as defined by Eq. (8)]. Red circles correspond to states
generated during part of an optimization, the green star to the
Dirac spin liquid, and the blue triangle to our most optimized
state. For energies below the Dirac spin liquid, improved energy
is correlated with decreased total asymmetry but increased
strength of the F2 pattern.
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is the role of projection in slave-particle theory. Since any
dimer state is the exact ground state at the mean field level
[25], projection effectively introduces quantum fluctua-
tions that melt this ‘‘crystal’’ into liquid crystalline phases.
Such a picture has implications for the DMRG calculations
on the kagome lattice and more generally for the search
for exotic phases in magnetic insulators. In DMRG, small
perturbations to the Hamiltonian (boundary conditions,
pinning fields, etc.) can bias the algorithm toward states
with a particular symmetry when there are competing
phases [3]. Exploring the class of perturbations that stabi-
lize the symmetry breaking of Fig. 1 in DMRG would
provide further insight into its origins and properties. It is
even possible that the DMRG ground state on a long
cylinder is an instability of the striped spin liquid crystal:
a nematic spin liquid crystal that breaks a lattice point
group symmetry like that reported in a recent study of a
triangular lattice antiferromagnet with ring exchange [26].
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